1. Find the limits.

(i)
$$\lim_{n \to \infty} (\sqrt{n^2 - n + 1} - n)$$
 (5%)

(ii)
$$\lim_{x \to 1} x^{\frac{1}{1-x}}$$
 (5%)

(iii)
$$\lim_{(x,y)\to(0,0)} \frac{3x^2y}{x^2+y^2}$$
 (5%)

(iv)
$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + k}}$$
 (5%)

2. Evaluate the integrals.

$$(i) \int_{1}^{4} e^{\sqrt{x}} dx \tag{10\%}$$

(ii)
$$\int_0^1 \int_y^1 \frac{1}{1+x^4} dx dy$$
 (10%)

3. Find
$$\frac{d^2}{dx^2} \int_0^x \int_1^{\sin t} \sqrt{1 + u^4} \, du dt$$
. (10%)

- 4. Find an equation of the tangent plane to the elliptic paraboloid $z = 2x^2 + y^2$ at the point (1, 1, 3). (10%)
- 5. Find the highest and lowest points on the curve $x^2 + xy + y^2 = 12$. (14%)
- 6. Find the work done by the force field $F(x,y) = (e^x y^3, x^3 + \cos y)$ on a particle that travels once around the unit circle $x^2 + y^2 = 1$ in the counterclockwise direction. (14%)
- 7. Let $f(x, y, z) = \frac{e^{x+y+z}}{xyz}$ for x > 0, y > 0 and z > 0. Show that f has the minimum value e^3 . (12%)