說明: 1	答案	一律寫在試卷」	Ŀ,	第IV大題之計算題必須寫出計算過程	, 否則不予計分。

- 2. 請依序作答,並標明題號。
- 3. $R = 8.314 \text{ J/K}^{-1} \text{ mol}^{-1}$, $F = 96485 \text{ C/mol}^{-1}$, $m_e = 9.11 \times 10^{-31} \text{ kg}$, $c = 2.998 \times 10^8 \text{ m/s}^{-1}$, $h = 6.626 \times 10^{-34} \text{ J/s}$

I. Multiple choice: (24%, 3% each)

- 1. Predict the sign of ΔH and ΔS for the reaction: $H_2 \rightarrow 2H$
 - (A) $\Delta H > 0$ and $\Delta S > 0$ (B) $\Delta H > 0$ and $\Delta S < 0$ (C) $\Delta H < 0$ and $\Delta S > 0$
 - (D) $\Delta H < 0$ and $\Delta S < 0$ (E) none of the above

2. Which of the following quantum numbers is used to describe the shape of an orbital in space? (A) n (B) l (C) m_l (D) m_s (E) none of the above

- 3. Which graph is not a straight line for an ideal gas?
 - (A) V versus T (n and P constant) (B) T versus P (n and V constant) (C) P versus 1/V (n and T constant) (D) n versus 1/T (P and V constant) (E) n versus 1/P (V and T constant)
- 4. Which one has the largest melting point?
 - (A) H_2O (B) H_2S (C) H_2Se (D) H_2Te (E) H_2
- 5. The central atom in all of the following compounds has the same hybridization, except (A) NO_2^- (B) CO_3^{-2} (C) BF₃ (D) NH₃ (E) SO_2
- 6. Which of the following can be oxidized to form an aldehyde?
 - (A) CH₃CH₂OH (B) CH₃CHOHCH₃ (C) CH₃OCH₃ (D) (CH₃)₂C=O
 - (E) none of the above
- 7. Which of the following is not an example of a d^{θ} transition-metal complex? (A) TiO_2 (B) VO_2^+ (C) $Cr_2O_7^{-2}$ (D) MnO_4^- (E) none of the above
- 8. For the reaction $A + 2B \rightarrow 2C$, the rate law for formation of C is (k: the rate constant for the reaction)
 - (A) rate = $k[A][B]^2$ (B) rate = k[A][B] (C) rate = $k[C]^2/[A][B]^2$
 - (D) rate = $k[A]^2[B]$ (E) impossible to state from the data given

II. Fill in the following blanks. (16%, 4% each)

- 1. For material X, the enthalpy of vaporization is 31.4 kJ/mol and the entropy of vaporization is 93.8 J/mol K. Above what temperature the vaporization of X will be spontaneous? Ans: $T \ge -(1)$ K
- 2. Arrange the following species by the order of increasing pH.
 - (A) human blood (B) lemon juice (C) acid rain (D) household ammonia

Ans: ___(2)___

- 3. What is the formal charge of the central oxygen in ozone, O₃? Ans: __(3)___
- 4. Write the electron configuration of the Cu⁺ ion.

Ans: ___(4)___

- III. Explain the following terms. (20%, 4% each)
- 1. Arrhenius equation
- 2. colligative property
- 3. ferromagnetic property
- 4. greenhouse effect
- 5. Heisenberg uncertainty principle
- IV. Answer the following questions. (40%; 1~4, 6% each; 5~6, 8% each)
- 1. Draw the Lewis structure and predict the geometric shape for the following species. (A) ${\rm IF_3}$, (B) ${\rm IF_4}^+$, and (C) ${\rm IF_4}^-$
- Give the expression which can be used to calculate the lattice enthalpy of NaCl from the information given below (all in kJ/mol).
 - (1) heat of formation of NaCl, $\Delta H_f = \mathbf{A}$
- (2) enthalpy of sublimation of Na(s), $\Delta H_{sub} = \mathbf{B}$
- (3) bond enthalpy of $Cl_2 = C$
- (4) electron affinity of chlorine = D
- (5) ionization energy of sodium = E
- 3. The percentage deprotonation of benzoic acid in a 0.110 M solution at 25° C is 2.4%. What is the pH of the solution and the K_a of benzoic acid?
- 4. Calculate the equilibrium constant at 25°C of the reaction: AgCl(s) \rightarrow Ag⁺(aq) + Cl⁻(aq). AgCl(s) + e⁻ \rightarrow Ag(s) + Cl⁻(aq) E°= +0.22 V and Ag⁺(aq) + e⁻ \rightarrow Ag(s) E°= +0.80 V
- 5. (A) What is the wavelength of the radio station, ICRT, transmitting at 100.7 MHz?
 - (B) Calculate the wavelength of an electron moving at 1/100 (or 1%) the speed of light.
- 6. For the spontaneous reaction: NO₃ (aq) + Hg(l) \rightarrow Hg₂²⁺(aq) + NO(g) in acidic solution under standard condition, (a) write the balanced equation, (b) write the cell diagram, (c) determine the standard cell emf (electromotive force), and (d) calculate ΔG° . Reduction half-reaction $E^{\circ}(NO_3^{\circ}, H^+/NO, H_2O) = +0.96 \text{ V}$, $E^{\circ}(Hg_2^{2+}/Hg) = +0.79 \text{ V}$