	<u> </u>			
扁號:	112	國立成功大學九十八	學年度碩士班招生考	試試題 共 9 頁 第1
	別: 材料科學及工程	學系		
	目: A 科目 ————————————————————————————————————			考試日期:0307・節次:
※ 考≤		可 □不可 使用計算		An are seen a see A \ 10 mg Al week
				0], 每題 1.5 分)、量子物理
	導論(20 題[41-60], 4	毎題 1.5 分)。滿分 90 分	分。倒扣至等分為止 。	o
	科目名稱: 普通物	7理		
	• •	, 題答對得 1.5 分,答錯	倒扣 0.375 分。	
	1 A mentials of mass	Ald is at the origin while	a particle of mass QM	f is at $x = 1$ m. Where would
	=	hird particle be zero?	e a particle of mass 700	is at x 1 in . Whole would
	$\bigcirc 0.4cm$	B 4.0cm	© 40.0cm	① 400.0cm
•	W 0.40m		9 14154	
	2. A 200-g ball of put	ty falls vertically into a	2.5-kg cart that is rolli	ng freely at 2m/s on a
	horizontal surface.	What is the final speed	of the cart?	
	A 1.85 m/sec	B 2.25 m/sec	© 3.50 m/sec	© 21.25 m/sec
	2 An object of mass	tha makes a completely	inelastic collision with	h an object of unknown mass
		ne kinetic energy is lost,		
	♠ 150 kg	® 50 kg	© 5.0 kg	① 1.5 kg
				Same Annual Come Wilhout to the
		are done on a spring, it	s extension increases i	from 4cm to 6cm. What is the
	spring constant?	60 16 N/m	Ø 22 N/m	① 48 N/m
	(A) 8 N/m	® 16 N/m	© 32 N/m	₩ 46 N/III
	5. A pump has to rais	e water from a depth of	50m and eject it at 10r	n/s. If the flow rate is 2kg/s,
	what horsepower is	s needed?		
	A 1.45 Hp	9.8Hp	© 21.4Hp	© 98Hp
	6 What is the work n	eeded to lift 15kg of wa	ter from a well 12m de	eep? Assume the water has a
		ecceleration of $0.7m/sec^2$.		
	(A) 1.89 kJ	® 21.34 kJ	© 134 kJ	⊕ 980 kJ
	(J 1.0) M		9 20 7 12	0 707 111
	7. The velocity of a 2	-kg particle changes fro	m (2i- 3j)m/s to (-5i+	2j)m/s. What is the change
	in its kinetic energ	y?		
	(A) 128 J	® 84 J	© 42 J	D 16 J
	O A not force E is see	wired to give an object	with mass m an acceler	ration a. If a net force 6 F is
		t with mass 2m, what is		
	A a	(B) 3a	© 6a	© 2a
			→	→ ** **

10. A physics student in a hot air balloon ascends vertically at constant speed. Consider the following four forces that arise in this situation:

F1 = the weight of the hot air balloon; F2 = the weight of the student; F3 = the force of the student pulling on the earth; F4 = the force of the hot air balloon pulling on the student. Which two forces form an "action-reaction" pair that obeys Newton's third law?

- A F1 and F2
- (B) F1 and F3
- © F3 and F4
- F2 and F3
- 11. An astronaut orbits the earth in a space capsule whose height above the earth is equal to the earth's radius. How does the weight of the astronaut in the capsule compare to her weight on the earth?
 - A It is equal to her weight on earth.
 - B It is one-fourth her weight on earth.
 - The is equal to one-half of her weight on earth.
 - D It is equal to one-third of her weight on earth.
- 12. Two point masses m and M are separated by a distance d. If the separation d remains fixed and the masses are increased to the values 3m and 3M respectively, how does the gravitational force between them change?
 - A The force will be one-third as great.
 - The force will be one-ninth as great.
 - The force will be three times as great.
 - D The force will be nine times as great.
- 13. A rock is suspended from a string; and it moves downward at constant speed. Which one of the following statements is true concerning the tension in the string if air resistance is not ignored?
 - A The tension is zero newtons.
 - B The tension points downward.
 - © The tension is equal to the weight of the rock.
 - ① The tension is less than the weight of the rock.
- 14. A concave shaving mirror is designed so the virtual image is twice the size of the object, when the distance between the object and the mirror is 15cm. Determine the radius of

_{編號:} 112 系所組別: 材料科學及工程		\ 學年度碩士班招生*	考試試題 共 9 頁 , 第	53
B試科目: A科目	- >1\		考試日期: 0307,節	次:
※ 考生請注意:本試題 ☑ curvature of the m		機		
(A) 15 cm	30 cm	© 60 cm	① 90 cm	
	d 30.0 cm to the right of		8.0 cm). A concave mirror (f	
(A) 18.1 cm	® 18.2 cm	© 18.3 cm	① 18.4 cm	
the central bright f of 475 nm. Assum	ringe on a flat screen is	0.0240 m, when light cate the fringes on the	e first-order bright fringe and is used that has a wavelength screen are small enough so elength of 611 nm.	
(A) 0.036 m	® 0.037 m	© 0.038 m	© 0.039 m	
	etermine the angle that		lit. The wavelength of the inge when the width of the	
(A) 12°	® 16°	© 20°	① 22°	
and falls on a scree		n away. In the diffraction	80 nm passes through this slit on pattern, find the width of	
♠ 0.012 m	® 0.015 m	© 0.018 m	① 0.021 m	
from one plate and	-	ate. When the potential	ocess, electrons are removed difference between the plates	
\triangle 7.0 × 10 ¹³		\bigcirc 7.0 × 10 ¹⁵	\bigcirc 7.0 × 10 ¹⁶	
this value, the resi		ly hot and often cracks	ertain rated value. Beyond apart. What is the largest istor is rated at 0.25 W.	
A 13 V	B 14 V	© 15 V	D 16 V	

編號: 112 共 9 頁 第4頁 國立成功大學九十八學年度碩士班招生考試試題 系所組別: 材料科學及工程學系 考試科目: A科目 考試日期:0307, 箭次:1 ※ 考生請注意:本試題 ☑可 □不可 使用計算機 科目名稱: 物理冶金 每題為4選1,每一題答對得1.5分,答錯倒扣0.375分。 21. A lattice is: A three-dimensional ordered array of points (B) A three-dimensional ordered array of atoms © A three-dimensional ordered array of unit cell (D) A three-dimensional ordered array of ions 22. The activation energy for diffusion can be determined by a plot of: (D: diffusivity; c: concentration) (A) lnD vs. 1/T (B) Inc vs. 1/T © lnD vs. T D Inc vs. T 23. The driving energy for sintering is: A Reduction in surface area of pores Reduction in total volume © Reduction in Gibbs energy of reaction Reduction in grain-boundary area 24. The counter-diffusion of ions is sometimes called: A Reaction diffusion Ambipolar diffusion © Solid-state diffusion D Self-diffusion 25. Oxidation is equivalent to: © Electron transfer © Electron excitation A Electron gain (B) Electron loss 26. Both Coble creep and Herring-Nabarro creep describe: B Creep due to dislocation movement A Power law creep © Creep due to atomic diffusion ① Creep due to grain-boundary sliding 27. Solid lubricants often have: B Amorphous structures A Layer structures Any kinds of structures © Liquid crystal structures

28. Which of the following is false about the theoretical shear strength of a particular set of crystal planes?

編號: 1	12 國立成功大學九十八零	基年度碩士班招生考試	試題 共 9 頁·第5頁
系所組別:	材料科學及工程學系		
考試科目 :	A科目		考試日期:0307・節次:
※ 考生請	主意:本試題 🗹 可 🗌 不可 使用計算機	}	
	A It increases as the shear modulus increases	ases.	
	B It increases as the interplanar distance	increases.	
	© It depends on temperature.		
	① It depends on the interatomic potential	of material.	
29	An array of etch pits reveals the movement	t of a dislocation, theref	ore, among them the etch
	pit with the		
	A largest B middle	© smallest	① unchanged
	size reveals the newest position of this dis	location.	
30	The magnitude of the shear stress at a dista	nce of 50 b(b = 0.248 n	m) on the slip plane from
	the boundary, which is consisted of many e	edge dislocations, due to	a single edge dislocation
	in the boundary is		
	A negligible B equal to	© smaller than	D larger than
	that due to the whole dislocations in the bo	oundary.	
31	Secondary recrystallization occurs as a resu	ult of	
•	A the strain energy of cold work	® recovery	
	© nucleation	D surface-energy	
	considerations.		
32	. For a FCC crystal the stacking faults assoc	ciated with the partials	can be formed by inserting
	an extra layer of atoms on the (1,-1,1) pla	ane, thus the displacen	nent vector of the stacking
	faults could be	•	
	♠ 1/6[1,1,0] ♠ 1/3[1,-1,1]	© 1/6[1,2,1]	① 1/3[-1,1,1]
33	. For the x-ray diffraction data, the wide pea	ks reveal that	
	A the sample is well crystallized	B the grain size of	the sample is large
	© the grain size of the sample is small	① the sample is am	orphous
34	. In order to precisely measure the lattice	constant of a sample	from x-ray diffraction, the
	diffraction angle (20) is taken preferably at	t around	
	(A) 10-50° (B) 50-100°	© 100-150°	① 150-180°
35	. The growth of chain-like wires via the va	por-liquid-solid mechar	nism is due to the periodic
	instability drived by the vapor supersat	turation. There has a	spheroid on the tops of
	nanowires. During growth, as the size of	the liquid droplet dec	reases, the required vapor

編號: 1	12	國立成功大學九十八	學年度碩士班招生	考試試題	共 9 頁 · 第6
系所組別:	材料科學及工程學	系			·
肾試科目:	A科目		·		考試日期: 0307·節次
※ 考生請	主意:本試題 🗹可	□不可 使用計算	機		
	supersaturation at t	he vapor-liquid interfa	ace can		
	A be unchanged	(B) increase	© decrease	D be equ	al to
	the surface tension	of the droplet.			
36.	The volume of an	FCC unit cell in terms	s of the atomic radius	R is:	
			\bigcirc 18R ³ $\sqrt{2}$	\bigcirc 20R ³ \checkmark	- 2
37.	An edge dislocation	n lies			
	A at 90 degree to	its Burgers vector	at 60 degree t	o its Burgers ve	ector
	© at 45 degree to	its Burgers vector	① at 0 degree to	its Burgers vec	tor
38.		e stability of a planar	_	-	
	_	gradient in the liqui	• •	• • •	-
	liquidus (m), the a diffusivity (D) is	alloy composition (C)	, the redistribution of	coefficient (k),	and the liquid
	(A) $G/R = m C (1-1)$	k) / D		+k) / kD	
	\bigcirc G/R = m C (1+	k) / 2kD		-k) / kD	
39.	Shear strain rate is	proportional to			
		\textcircled{B} $\rho b^2 v$	© ρb ^{1/2} v	Φ pbv	
	where p is dislocat	ion density, b is Burge	ers vector, and v is ave	erage dislocation	n density.
40.	Number of vacancy	equals to			

(A) $n \times \exp(-H_f/2RT)$ (B) $n \times \exp(-H_f/RT)$ (C) $n^2 \times \exp(-H_f/2RT)$ (D) $n^2 \times \exp(-H_f/RT)$

vacancies.

where n=number of atoms, R=gas constant, and H_f = activation enthalpy for the formation of

編號:	11	12	國立成功大學九-	十八學年度碩士班招生 >	考試試題	共 9 頁 第 7 章
系所組织	別:	材料科學及工	工程學系			,
考試科	目:	A科目			3	手試日期:0307・節次:
※ 考生	上請注	主意:本試題	☑可 □不可 使用計	- 算機		
	科目	目名稱: 量·	子物理導論			
	每月	医為 4 選 1 , 4	再一題答對得 1.5 分,	答錯倒扣 0.375 分。		
	Plan	nck's constant	$h = 6.63 \times 10^{-34} \text{ J-s},$			
	Mas	ss of an electro	$on = 9.1 \times 10^{-31} \text{ kg},$			
	Spe	ed of light = 3	$x10^8$ m/sec,			
	Cha	arge of an elect	$ron = 1.6 \times 10^{-19} \text{ C}$			
	Bol	tzmann consta	$nt = 1.381 \times 10^{-23} \text{ J/K}$			
	/ 11	Dobric atomic	e model applies			
	71,		oms having low atomic	numbers		
		B to all ator	_			
			ne-electron atoms			
		_ •	vo-electron atoms			
		e omy to tr				
	42.	A particle lim	ited to the x axis is desc	ribed by $\Psi = (3x^2)^{1/2}$ for	$0 \le x \le 1 \text{ and } \Psi$	= 0 elsewhere.
		What is the ex	xpectation value <x> of</x>	the particle's position?		
			B 1.00	© 0.50	1 0.60	
	43.	What is infor	mation that can be obtain	ned from the wave function	ons?	
		A Only qua	ntized information.			
		All the pa	article information perm	itted by the uncertainty p	rinciple.	
		© Only info	rmation on probability.	,		
		① All the qu	uantized and probability	information.		
	44.	According to	the selection rule, which	h of the following is true	?	
		$ \Delta n = any $				
		$\bigcirc \Delta m_I = 0,$	±1	All of the about	ove are correct.	
	45	An eigenfuncti	ion of the operator d ² /dx	e^2 is $\Psi = 2e^{2x}$. What is the	corresponding e	igenvalue?
		A 16	B 8	© 4	© 2	
	46.	Is a 1s electro	n in a hydrogen more lil	kely to be at a ₀ from the r	nucleus than at ao	/2?
		A No.				
	÷	_	t is at least 50% more lil	cely.	·	
		_	be determined.			
•		① Yes and i	t is at least 30% more lil	kely.		

(背面仍有題目,請繼續作答)

編號:				學年度碩士班招生才	芳試試題	共 9 頁 第8頁
系所組別 考試科目		材料科學及工程學家 A科目	长			考試日期:0307·節次:1
※ 考生	請	主意:本試題 🗹 可	□不可 使用計算	茂		
	47.	An element is place	ed in a magnetic fie	ld and excited. If the	Zeeman cor	nponents of the
		450-nm spectral lin magnetic field?	e are separated by	0.00283 nm, then w	hat is the m	agnitude of the
		⑥ 0.30 T	® 0.20 T	© 0.15 T	D 0.10	T
	48.	For a particle to beh (A) with spin	ave as a de Broglie v B carry charge	vave, what is the follo © with moment		
		G wan opin	e omi, orimgo	9 //		
		A tungsten filament of the following effect	_	d hot at 2000 °C, this	phenomenon	is due to which
		A Black body radia	ation effect	Photoelectric	effect	
		© Phosphorescence	e effect	Photodiode ef	fect	
		-	-	ton, part of the X-ray		
				ectron have the minim		ergy?
·		(♠ 0°	® 45°	© 90°	◎ 180°	
	51.	The synchrotron rad	iation facility is a	•		
		A high precision S	TM	B high energy el	ectron source	}
		© high intensity X	RD source	D high resolution	n TEM	
	52.	With knowing the ic	nization energy of a	hydrogen atom, which	h of the follo	wing theory can
		be used to estimate to	he radius of a hydrog	en atom?		
		A Heisenberg unce	ertainty principle	B de Broglie wa	ve	
		© Compton effect		Special relative	rity	
		A static electron was accelerated electron?	accelerated by a dc	voltage of 10 kV, wha	at is the kinet	ic energy of the
		(€ 6.626×10 ⁻³¹ J	® 9.11×10 ⁻⁸ J	\bigcirc 1.6×10 ⁻¹⁵ J	① 1.6×	10 ⁻²⁰ J
	54.	If an atomic shell is d	enoted as M, what is	its principle quantum	number?	•
•		A 1	B 2	© 3	1 4	
	55 .	Which of the follow	ing states is impossib	ole to exist?	,	
		\bigcirc 3F_1	$\mathbb{B}^{3}F_{2}$	3 F ₃	$\mathbb{D}^{-3}F_4$	

<u></u>								
編號:	112		國立成功大學九十八	學年度碩士班招 约	生考試試題	共	9頁	,第9
系所組	別: 材料	科科學及工程學	學系					
吟 試科	·目: A科	4目				考試日期	: 030	7 · 節次
※ 考	生請注意	:本試題 🗹	可 □不可 使用計算机	幾				
-			diation lasts for much		n fluorescent radi	iation.	This	is
	beca	ause phosphore	scent radiations come fi	rom the transitions	between:			
	(A)	different vibra	ational states					
	B	different rotat	tional states					
	C	electronic sta	tes of different orbital q	uantum number				
	0	electronic sta	tes of different spin qua	ntum number				
	57. In a	n ideal gas, the	number of energy state	s, g(E), is proportion	onal to:			
	A	E^2		© E	$\bigcirc E^{1/2}$			
	58. If th	ne average ener	rgy of a free electron in	a metal is denoted	d as E _A , and the F	ermi e	nergy	of
	the	metal is E _F , wh	ich of the following rela	ations is right at T=	=0 K?			
	(A	$E_A = E_F/2$	B $E_A = 2E_F/3$	© $E_A = 3E_F/4$		E _F /5		
	59. Spa	ce quantization	of spin orientations wa	s demonstrated exp	plicitly by:			
	A	Zeeman Effe	et	Stern-Gerla	ach Experiment			
	C	Rutherford Se	cattering	D Franck-He	rtz Experiment			
	60. X-r	ays arise from	the electronic transition	s from the outer sh	nells to the inner s	hells. V	Whicl	ı is
	the	starting shell o	f the transition for the k	ζ _γ line?				
	A	N		© L	① K			