※ 考生請注意:本試題 ☑可 □不可 使用計算機

- 1. Each diode cut-in voltage in the circuit in Figure 1 is 0.7V. Determine I_{Dl} , I_{D2} , I_{D3} , and ν_0 for $\nu_1 = 3.0$ V. (12%)
- 2. Consider the circuit shown in Figure 2. The threshold voltages of the n-channel transistors are $V_{TN} = 0.8$ V, and the threshold voltages of the p-channel transistors are $V_{TP} = -0.8$ V. The conduction parameters are all equal. If $\nu_{02} = 0.6$ V, determine the values of ν_{03} , ν_{01} , and ν_{1} . (18%)
- Consider the circuit shown in Figure 3 with transistor parameters of β₁=β₂= 120, V_{BE1(on)}=V_{BE2(on)}= 0.7V, and V_{A1}=V_{A2}=∞. (a) Determine the overall small-signal voltage gain A_ν = ν₀/ν_s. (b) Determine the input resistance R_{is} and the output resistance R_o. (c) Determine the maximum undistorted swing in the output voltage. (20%)
- 4. Consider the amplifier whose small-signal AC equivalent circuit is shown in Figure 4, assume that the parameter values for the circuit are given as follows. C_c = 1 μF, C₁ = 10 pF, C₂ = 1 pF, R_s = 75 Ω, R_{in} = 2.5 kΩ, R_L = 1 kΩ, g_m = 0.04 A/V. (a) Find the upper and lower 3-dB frequencies of the frequency response. (10%) (b) What is the gain-bandwidth product for this amplifier ? (5%)
- 5. An amplifier has a dc gain of 10^5 and poles at 10^4 Hz, 10^6 Hz, and 10^8 Hz. If this amplifier is operated in a closed negative feedback loop with a frequency-independent feedback factor β .

(a) Is this amplifier unity-gain stable ? Please explain the reason for your answer. (7%)

- (b) What are the gain and phase margins if the amplifier is operated with $\beta = \frac{1}{100}$?(8%)
- 6. It is required to design a class B amplifier with the output voltage across a load $R_L=8$ Ω shown in the Figure 5. Neglecting the effects of finite V_{BE} and V_{CEsat}.
 - (a) Determine the load power, the supply power, and the power-conversion efficiency.(12%)
 - (b) Find the maximum power dissipation P_D in the transistors. (8%)

(背面仍有題目,請繼續作答)

