編躆：205，206，219
※ 考生請注意：本試題 ■ 可 \square 不可 使用計算機
1．Each diode cut－in voltage in the circuit in Figure 1 is 0.7 V ．Determine $I_{D l}, I_{D 2}, I_{D 3}$ ，and ν_{0} for $\nu_{I}=3.0 \mathrm{~V} .(12 \%)$

2．Consider the circuit shown in Figure 2．The threshold voltages of the n－channel transistors are $V_{T N}=0.8 \mathrm{~V}$ ，and the threshold voltages of the p－channel transistors are $V_{T P}=-0.8 \mathrm{~V}$ ．The conduction parameters are all equal．If $\nu_{02}=0.6 \mathrm{~V}$ ，determine the values of $\nu_{03}, \nu_{\mathrm{ol}}$ ，and $\nu_{\mathrm{I}}(18 \%)$

3．Consider the circuit shown in Figure 3 with transistor parameters of $\beta_{1}=\beta_{2}=$ $120, \mathrm{~V}_{\mathrm{BE} 1(\text { on })}=\mathrm{V}_{\mathrm{BE} 2 \text {（on）}}=0.7 \mathrm{~V}$ ，and $\mathrm{V}_{\mathrm{A} 1}=\mathrm{V}_{\mathrm{A} 2}=\infty$ ．（a）Determine the overall small－signal voltage gain $\mathrm{A}_{\nu}=\nu_{o} / \nu_{\mathrm{s}}$（b）Determine the input resistance $R_{i s}$ and the output resistance R_{o} ．（c）Determine the maximum undistorted swing in the output voltage． （ 20% ）
4．Consider the amplifier whose small－signal AC equivalent circuit is shown in Figure 4， assume that the parameter values for the circuit are given as follows．
$\mathrm{C}_{\mathrm{c}}=1 \mu \mathrm{~F}, \mathrm{C}_{1}=10 \mathrm{pF}, \mathrm{C}_{2}=1 \mathrm{pF}, \mathrm{R}_{\mathrm{s}}=75 \Omega, \mathrm{R}_{\mathrm{in}}=2.5 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{g}_{\mathrm{m}}=0.04 \mathrm{~A} / \mathrm{V}$.
（a）Find the upper and lower $3-\mathrm{dB}$ frequencies of the frequency response．（ 10% ）
（b）What is the gain－bandwidth product for this amplifier？（5\％）
5．An amplifier has a dc gain of 10^{5} and poles at $10^{4} \mathrm{~Hz}, 10^{6} \mathrm{~Hz}$ ，and $10^{8} \mathrm{~Hz}$ ．If this amplifier is operated in a closed negative feedback loop with a frequency－independent feedback factor β ．
（a）Is this amplifier unity－gain stable ？Please explain the reason for your answer．（7\％）
（b）What are the gain and phase margins if the amplifier is operated with $\beta=\frac{1}{100} ?(8 \%)$
6．It is required to design a class B amplifier with the output voltage across a load $R_{L}=8$ Ω shown in the Figure 5．Neglecting the effects of finite $V_{B E}$ and $V_{\text {CEsat }}$ ．
（a）Determine the load power，the supply power，and the power－conversion efficiency． （12\％）
（b）Find the maximum power dissipation P_{D} in the transistors．（8\％）系所組別：電機系，微電子工程研究所，電腦與通信工程研究所
考試科目：電子學
※ 考生請注意：本試題 \square 可 \square 不可 使用計算機

Figure 1

Figure 2

Figure 3

C_{2}

Output waveform
$f=\frac{1}{T}=60 \mathrm{~Hz}$
Figure 5

