※ 考生請注意：本試題可使用計算機，並限「考選部核定之國家考試䉓子計算器」機型

1．Answer the following questions：
（a）Summarize Maxwell＇s equations in differential form．（5\％）
（b）What is the Poynting vector？Interpret Poynting＇s theorem．（5\％）
（c）Briefly describe the phenomenon of polarization in a dielectric material．What are the different kinds of polarization？（5\％）
（d）What is the basis behind the construction of the Smith chart？（5\％）
（e）Explain TE，TM and TEM waves．（5\％）
（f）State Poisson＇s equation．How is it derived？（5\％）
2．Charge is distributed with density $\rho=\rho_{0}(r / a)^{2}$ ，where ρ_{0} is a constant，in the sphere $r<a$ ．Find displacement field \mathbf{D} everywhere and plot D_{r} versus r ．（16\％）

3．For the electric field $\mathbf{E}=E_{0} \mathbf{a}_{y} \cos \left[3 \pi \times 10^{8} t+0.2 \pi(4 x+3 z)\right]$ in free space，find the associate magnetic field intensity vector．（10\％）
4．A boundary separated free space from a perfect dielectric medium．At a point on the boundary，the electric field intensity on the free space side is
$\mathbf{E}_{1}=E_{0}\left(4 \mathbf{a}_{x}+2 \mathbf{a}_{y}+5 \mathbf{a}_{z}\right)$, whereas on the dielectric side，it is $\mathbf{E}_{2}=3 E_{0}\left(\mathbf{a}_{x}+\mathbf{a}_{z}\right)$, where E_{0} is a constant．Find the permittivity of the dielectric medium．(16%)

5．An infinitely long，uniformly wound solenoid of radius a and having N turns per unit length carries a current I ．Find the inductance per unit length of the solenoid．Assume air core $\left(\mu=\mu_{0}\right) .(10 \%)$
※ 考生請注意：本試題可使用計算機，並限「考選部核定之國家考試電子計算器」機型

6．In the arrangement shown below，a uniform plane wave having the electric field

$$
\mathbf{E}_{i}=E_{0} \cos \left(45 \pi \times 10^{8} t-15 \pi z\right) \cos \left(15 \pi \times 10^{8} t-5 \pi z\right) \mathbf{a}_{x} \mathrm{~V} / \mathrm{m}
$$

is incident on the interface at $z=0$ ．Find the fraction of the incident time－average power reflected back into medium 1 and the fraction transmitted into medium 3．［Hint： You may use the properties of quarter－wave and half－wave sections in a transmission line system．］（ 18% ）

Some formula for your reference：

$$
\cos \alpha \cos \beta=\frac{1}{2}[\cos (\alpha+\beta)+\cos (\alpha-\beta)]
$$

