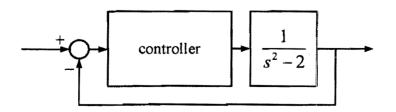
編號: 181

系所組別: 電機工程學系乙組 考試科目: 控制系統


考試日期:0226, 筋次:2

共 / 頁,第/頁

- **1. (25%)** For the unity feedback control system with an open-loop transfer function $G(s) = \frac{K(s+\alpha)}{s(s+\beta)}$, find the values of K, α , and β in order to meet the following specifications: The steady-state position error for a unit ramp input equals 0.1; $\zeta = 0.7$; $\omega_r = 10 \ rad/sec$.
- 2. (25%) Consider the plant $G(s) = \frac{s+2}{(s+5)(s+9)}$ whose phase variables are not available. Design an observer for the phase variables with a transient response described by $\zeta = 0.7$ and $\omega_n = 10 \ rad/sec$.
- **3. (25%)** A vertical launch rocket has mass m and thrust T. The rocket is subject to gravitational attraction with acceleration $g = g_0 \left(\frac{R}{R+h}\right)^2$ where g_0 is a constant, R

is the radius of the earth, and h is the altitude.

- i. (10%) Obtain the differential equation that describes the relationship between the input thrust T and the output altitude h.
- ii. (10%) The equation is nonlinear, find the linear approximation at h = 0 and determine the transfer function from the input to the output.
- iii. (5%) Evaluate the poles of the system.
- 4. (25%) Consider the system in the figure in which a controller is to be designed to stabilize the system,
 - i. (10%) Show that the system cannot be stabilized by a PI controller.
 - ii. (15%) Find a controller that stabilizes the system.

