※ 考生請注意：本試題可使用計算機，並限「考選部核定之國家考試電子計算器」 機型

1．（ 15% ）Use separation of variables to find the general solution．Then，obtain the particular satisfying the given initial condition．Sketch the graph of the solution， showing the key features，and label any key values

$$
y^{\prime}=\left(y^{2}-y\right) e^{x} ; \quad y(0)=2
$$

2．(20%) To solve $x^{2} y^{\prime \prime}-2 x y^{\prime}+4 y=0$

3．（20\％）If $f(z)$ is analytic for $|z|<1$ and $|f(z)| \leq \frac{1}{1-|z|}$
Find the best estimated value of $f^{(n)}(0)$ that Cauchy＇s formula will yield，express it in terms of n ．（Hint：Use Cauchy＇s formula in each $|z|<r,(r<1)$ ）．

4．（ 15% ）Find the smallest positive integers m and n such that

$$
(\sqrt{3}-i)^{m}=(1+i)^{n}
$$

5．（15\％）For the following figure，the Fourier Transform of $f(t)$ is denoted as $\hat{f}(\omega)$ ．
（A）．Find $\hat{f}(\omega)$ ．
（B）．Evaluate $\int_{-\infty}^{\infty}|\hat{f}(\omega)|^{2} d \omega$

6．（15\％）Consider the problem

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \quad \text { for } 0<x<a, 0<y<b \\
& \frac{\partial u}{\partial y}(x, 0)=f(x) \text { for } 0 \leq x \leq a \\
& \frac{\partial u}{\partial y}(x, b)=g(x) \text { for } 0 \leq x \leq a \\
& \frac{\partial u}{\partial x}(0, y)=\frac{\partial u}{\partial x}(a, y)=0 \text { for } 0 \leq y \leq b
\end{aligned}
$$

（A）．State the necessary condition for existence of a solution．
（B）．Solve the problem for $a=b=\pi, f(x)=\cos (2 x) \cos (x)-\sin (2 x) \sin (x), g(x)=3 x-\frac{3}{2} \pi$ ．

