編號: 188,189,202

國立成功大學102學年度碩士班招生考試試題

共4頁,第1頁

系所組別: 電機工程學系甲乙丁戊組,微電子工程研究所,電腦與通信工程研究所丙丁組 考試科目: 電子學

考試日期:0223, 節次:1

※ 考生請注意:本試題可使用計算機

- 1. Consider the circuit shown in Figure 1 with parameters of $R_s=10 \text{ k}\Omega$, $R_i=10 \text{ k}\Omega$, $C_i=10 \text{ pF}$, $R_i=10 \text{ k}\Omega$, $R_2=20 \text{ k}\Omega$, $C_i=100 \text{ nF}$ and $G_m=100 \text{ mA/V}$.
 - (a) Find $T_i(s) = V_i(s)/V_s(s)$ in the standard form of two polynomial expressions and the corresponding 3dB frequency. (6%)
 - (b) Find $T(s) = V_o(s)/V_s(s)$ in the standard form of two polynomial expressions and the gain-bandwidth product. (10%)

Figure 1

- 2. Consider the circuit shown in Figure 2 with parameters of $V_{DD}=5$ V, $\mu_n C_{ox}=40 \mu$ A/V², and $\mu_p C_{ox}=20 \mu$ A/V², $|V_{tn0}|=|V_{tp0}|=1$ V, $\gamma=0.5$ V^{1/2}, $2 \Phi_f=0.6$ V, (W/L)_{Q1}= 2μ m/1 μ m, (W/L)_{Qp}= $2 \times$ (W/L)_{Qn}= 5μ m/1 μ m, C = 10fF.
 - (a) Determine threshold voltage of Q_I after $v_I = V_{DD}$, $v_C = V_{DD}$ and v_x is stable. (4%)
 - (b) Find noise margin V_{OH} of Q_1 when $v_1 = V_{DD}$ and $v_C = V_{DD}$. (4%)
 - (c) Determine the static current of the inverter, its power consumption and v_0 when $v_1 = V_{DD}$ and $v_c = V_{DD}$. (10%)

Figure 2

(背面仍有題目,請繼續作答)

编號[:] 188,189,202

國立成功大學102學年度碩士班招生考試試題

系所組別: 電機工程學系甲乙丁戊組,微電子工程研究所,電腦與通信工程研究所丙丁組

考試科目: 電子學

考試日期:0223, 節次:1

共4頁,第2頁

※考生請注意:本試題可使用計算機

- 3. It is required to design the circuit of Figure 3 to provide a constant current $I_0=10\mu A$.
 - (a) Determine the values of the required resistors R_2 and R_3 , assuming that $I_{REF}=100\mu A$, $v_{BE}=0.7V$ at a 1-mA current, and β to be high. (6%)
 - (b) If $\beta = 200$ and $V_A=100V$, find the value of the output resistance, and find the change in output current corresponding to a 5-V change in output voltage. (6%)

Figure 3

- 4. It is required to design the circuit of Figure 4 to provide a bias current $I_B=225\mu A$ with Q_8 and Q_9 as matched devices having W/L = 60/0.5. Transistors Q_{10} , Q_{11} , and Q_{13} are to be identical, with the same g_m as Q_8 and Q_9 . Transistor Q_{12} is to be four times as wide as Q_{13} . Let $\mu_n C_{ox} = 3\mu_P C_{ox} = 180 \ \mu A/V^2$ and $V_{DD}=V_{SS}=1.5V$.
 - (a) Find the required value of R_B and the voltage drop across R_B . (4%)
 - (b) Specify the W/L ratios of Q_{10} , Q_{11} , Q_{12} , and Q_{13} . (3%)
 - (c) Give the expected dc voltages at the gates of Q_{12} , Q_{10} , and Q_8 . (6%)

Figure 4

國立成功大學102學年度碩士班招生考試試題

系所組別: 電機工程學系甲乙丁戊組,微電子工程研究所,電腦與通信工程研究所丙丁組 考試科目: 電子學

考試日期:0223,節次:1

共4 頁,第3頁

※ 考生請注意:本試題可使用計算機

188,189,202

編號:

5. Consider a feedback amplifier for which the open-loop gain A(s) is given by

$$A(s) = \frac{1000}{(1 + s/10^4)(1 + s/10^5)^2}$$

If the feedback factor β is independent of frequency, find the frequency at which the phase shift is 180°, and find the critical value of β at which oscillation will occur. (8%)

- 6. An amplifier has a dc gain of 10^5 and poles at 5×10^5 Hz, 10^7 Hz, and 5×10^8 Hz. To stabilize the amplifier with unity feedback ($\beta = 1$), move the first pole by introducing a compensation capacitor. Assume the second pole remains. Calculate the frequency of the first new pole to achieve a phase margin of 45° . (5%)
- A prototype active filter with admittances Y₁ through Y₄ is shown in Figure 7a. Assume the Opamp is ideal. The transfer function of this filter is as follows

$$\frac{v_o(s)}{v_i(s)} = \frac{Y_1 Y_2}{Y_1 Y_2 + Y_4 (Y_1 + Y_2 + Y_3)}$$

A designed filter is the cascade of the prototype circuits shown in Figure 7b, where R

- = 10 k Ω , C = 0.01 μ F, C₁ = 1.082C, C₂ = 0.9241C, C₃ = 2.613C, C₄ = 0.3825C
- (a) Calculate the zeros and poles of the transfer function for this designed filter. (8%)
- (b) What is the type of this filter (lowpass, highpass, bandpass, bandreject, or)? Explain why? (5%)

(背面仍有題目,請繼續作答)

編號: 188,189,202

國立成功大學102學年度碩士班招生考試試題

系所組別: 電機工程學系甲乙丁戊組,微電子工程研究所,電腦與通信工程研究所丙丁組

考試科目: 電子學

考試日期:0223,節次:1

共4頁,第4頁

※ 考生請注意:本試題可使用計算機

Figure 7a

- 8. A phase-shift oscillator is shown in Figure 8, where $R = 10 \text{ k}\Omega$, C = 10 nF
 - (a) Find the loop gain by breaking the circuit at node X. (10%)
 - (b) Calculate the oscillation frequency f_0 , and the minimum required value of R_f for oscillation to start in this circuit. (5%)

