1．Consider the circuit shown in Figure 1 with parameters of $R_{s}=10 \mathrm{k} \Omega, R_{i}=10 \mathrm{k} \Omega$ ， $C_{i}=10 \mathrm{pF}, R_{l}=10 \mathrm{k} \Omega, R_{2}=20 \mathrm{k} \Omega, C_{l}=100 \mathrm{nF}$ and $G_{m}=100 \mathrm{~mA} / \mathrm{V}$ ．
（a）Find $T_{i}(s)=V_{i}(s) / V_{s}(s)$ in the standard form of two polynomial expressions and the corresponding 3 dB frequency．（6\％）
（b）Find $T(s)=V_{o}(s) / V_{s}(s)$ in the standard form of two polynomial expressions and the gain－bandwidth product．（ 10% ）

Figure 1

2．Consider the circuit shown in Figure 2 with parameters of $V_{D D}=5 \mathrm{~V}, \mu_{n} \mathrm{C}_{\mathrm{ox}}=40 \mu$ $\mathrm{A} / \mathrm{V}^{2}$ ，and $\mu_{p} \mathrm{C}_{\mathrm{ox}}=20 \mu \mathrm{~A} / \mathrm{V}^{2},\left|V_{t n 0}\right|=\left|V_{t p 0}\right|=1 \mathrm{~V}, \quad \gamma=0.5 \mathrm{~V}^{12}, 2 \Phi_{f}=0.6 \mathrm{~V},(\mathrm{~W} / \mathrm{L})_{\mathrm{Q} 1}=2 \mu$ $\mathrm{m} / 1 \mu \mathrm{~m},(\mathrm{~W} / \mathrm{L})_{\mathrm{Qp}_{\mathrm{p}}}=2 \times(\mathrm{W} / \mathrm{L})_{\mathrm{Qn}}=5 \mu \mathrm{~m} / 1 \mu \mathrm{~m}, \mathrm{C}=10 \mathrm{fF}$ ．
（a）Determine threshold voltage of Q_{I} after $v_{I}=V_{D D}, v_{C}=V_{D D}$ and v_{x} is stable．（4\％）
（b）Find noise margin $V_{O H}$ of Q_{I} when $v_{I}=V_{D D}$ and $v_{C}=V_{D D}$ ．（4\％）
（c）Determine the static current of the inverter，its power consumption and v_{O} when $v_{I}=V_{D D}$ and $v_{C}=V_{D D} .(10 \%)$

Figure 2

编號：188，189，202
國立成功大學 102 學年度碩士班招生考試試題
系所組別：電機工程學系甲乙丁戊組，微電子工程研究所，電腦與通信工程研究所丙丁組
※ 考生請注意：本試題可使用計算機

3．It is required to design the circuit of Figure 3 to provide a constant current $I_{0}=10 \mu \mathrm{~A}$ ．
（a）Determine the values of the required resistors R_{2} and R_{3} ，assuming that $I_{\text {REF }}=100 \mu A$ ， $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$ at a $1-\mathrm{mA}$ current，and β to be high．（ 6% ）
（b）If $\beta=200$ and $V_{A}=100 \mathrm{~V}$ ，find the value of the output resistance，and find the change in output current corresponding to a $5-\mathrm{V}$ change in output voltage．（6\％）

Figure 3

4．It is required to design the circuit of Figure 4 to provide a bias current $I_{B}=225 \mu \mathrm{~A}$ with Q_{8} and Q_{9} as matched devices having $W / L=60 / 0.5$ ．Transistors Q_{10}, Q_{11} ，and Q_{13} are to be identical，with the same g_{m} as Q_{8} and Q_{9} ．Transistor Q_{12} is to be four times as wide as Q_{13} ．Let $\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=3 \mu_{\mathrm{P}} \mathrm{C}_{\mathrm{ox}}=180 \mu \mathrm{~A} / \mathrm{V}^{2}$ and $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{SS}}=1.5 \mathrm{~V}$ ．
（a）Find the required value of R_{B} and the voltage drop across R_{B} ．（4\％）
（b）Specify the W / L ratios of Q_{10}, Q_{11}, Q_{12} ，and Q_{13} ．（3\％）
（c）Give the expected dc voltages at the gates of $\mathrm{Q}_{12}, \mathrm{Q}_{10}$ ，and Q_{8} ．（6\％）

Figure 4

编號：188，189，202 國立成功大學102學年度碩士班招生考試試題 共4 頁，第3頁
系所組別：電機工程學系甲乙丁戊組，微電子工程研究所，電腦與通信工程研究所丙丁組

5．Consider a feedback amplifier for which the open－loop gain $A(s)$ is given by

$$
A(s)=\frac{1000}{\left(1+s / 10^{4}\right)\left(1+s / 10^{5}\right)^{2}}
$$

If the feedback factor β is independent of frequency，find the frequency at which the phase shift is 180° ，and find the critical value of β at which oscillation will occur． （8\％）

6．An amplifier has a dc gain of 10^{5} and poles at $5 \times 10^{5} \mathrm{~Hz}, 10^{7} \mathrm{~Hz}$ ，and $5 \times 10^{8} \mathrm{~Hz}$ ．To stabilize the amplifier with unity feedback（ $\beta=1$ ），move the first pole by introducing a compensation capacitor．Assume the second pole remains．Calculate the frequency of the first new pole to achieve a phase margin of $45^{\circ} .(5 \%)$

7．A prototype active filter with admittances Y_{1} through Y_{4} is shown in Figure 7a．
Assume the Opamp is ideal．The transfer function of this filter is as follows

$$
\frac{v_{o}(s)}{v_{i}(s)}=\frac{Y_{1} Y_{2}}{Y_{1} Y_{2}+Y_{4}\left(Y_{1}+Y_{2}+Y_{3}\right)}
$$

A designed filter is the cascade of the prototype circuits shown in Figure 7 b ，where R $=10 \mathrm{k} \Omega, \quad \mathrm{C}=0.01 \mu \mathrm{~F}, \quad \mathrm{C}_{1}=1.082 \mathrm{C}, \mathrm{C}_{2}=0.9241 \mathrm{C}, \mathrm{C}_{3}=2.613 \mathrm{C}, \mathrm{C}_{4}=0.3825 \mathrm{C}$
（a）Calculate the zeros and poles of the transfer function for this designed filter．（8\％）
（b）What is the type of this filter（lowpass，highpass，bandpass，bandreject，or ．．．．）？ Explain why？（5\％）

編號：188，189，202 國立成功大學102學年度碩士班招生考試試題 共4頁，第4頁
系所組別：電機工程學系甲乙丁戊組，微電子工程研究所，電腦與通信工程研究所丙丁組考試科目：電子學
※ 考生請注意：本試題可使用計算機

Figure 7a

Figure 7b

8．A phase－shift oscillator is shown in Figure 8，where $R=10 \mathrm{k} \Omega, \mathrm{C}=10 \mathrm{nF}$
（a）Find the loop gain by breaking the circuit at node X ．（ 10% ）
（b）Calculate the oscillation frequency f_{o} ，and the minimum required value of R_{f} for oscillation to start in this circuit．（5\％）

Figure 8

