※ 考生請注意：本試題可使用計算機

1．Answer the following questions．
（a）［5 分］Define polarization vector and magnetization vector，respectively．What is the intrinsic impedance for a material medium？
（b）［10 分］What are electromagnetic potentials？How do they arise？State Laplace＇s equation and Poisson＇s equation and give two cases to which the equation can be applied，respectively．
（c）［5 分］What is the basis behind the construction of the Smith chart？Define the standing－wave ratio （SWR）．
（d）［6 分］What is the Q factor of a resonator？What are transverse elecric wave，transverse magnetic wave and hybrid wave in an optical waveguide？
（e）［4 分］Define the radiation resistance and directivity of an antenna．

2．［18 分］The x－variation of charge density independent of y and z in free space is shown below．Find and sketch the resulting electric field E_{x} versus x ．

3．［18 分］The electric field of a uniform plane wave propagating in the $+z$－direction in a nonmagnetic material medium is given by

$$
\mathrm{E}=8.4 e^{-0.0432 z} \cos \left(4 \pi \times 10^{6} t-0.1829 z\right) \boldsymbol{a}_{x} \mathrm{~V} / \mathrm{m}
$$

Find the magnetic field of the wave．Further，find the values of conductivity σ and permittivity ε of the medium．

4．［18 分］Consider the system shown below，where $\bar{V}_{g}=100 \angle 0^{\circ} \mathrm{V}, \bar{Z}_{g}=(10+j 10) \Omega, \bar{Z}_{R}=(30+j 40) \Omega$ ， and the length of the transmission line $l=0.725 \lambda$ with characteristic impedance of $Z_{0}=50 \Omega$ ．Find the time－average power delivered to the load \bar{Z}_{R} ．

※ 考生請注意：本試題可使用計算機

5．［16 分］Transverse electric modes are excited in an air dielectric parallel－plate waveguide of dimension $a=5$ cm by setting up its mouth a field distribution having

$$
\mathbf{E}=10(\sin 20 \pi x+0.5 \sin 60 \pi x) \sin 10^{10} \pi t \mathbf{a}_{y}
$$

Determine the propagating mode（s）and obtain the expression for the electric field of the propagating wave．

Some formula for your reference．
$\bar{\gamma}=\sqrt{j \omega \mu(\sigma+j \omega \varepsilon)}, \bar{\eta}=\sqrt{\frac{j \omega \mu}{\sigma+j \omega \varepsilon}}$
$\mu_{0}=4 \pi \times 10^{-7}$ henrys $/ \mathrm{m}, \varepsilon_{0}=\frac{10^{-9}}{36 \pi} \mathrm{~F} / \mathrm{m}$
Phase constant for a TE wave in a waveguide：$\beta_{z}=\frac{2 \pi}{\lambda} \sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}}$

