编號:192, 203,210

國立成功大學103學年度碩士班招生考試試題

共5頁,第/頁

系所組別: 電機工程學系甲乙丁戊組、電腦與通信工程研究所丙丁組、電機資訊學院-微電奈米聯招 考試科目: 電子學 考試日期:0222,節次:1

※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

- 1. Fig. 1 shows a circuit that performs the high-pass transfer function.
 - (1) Derive the transfer function of this circuit and identify its high-frequency gain and 3-dB frequency. (4%)
 - (2) Determine the values of R_1 , R_2 , and C to obtain a high-frequency input resistance of 10 k Ω , a high-frequency gain of 40 dB, and a 3-dB frequency of 1000 Hz. (6%)
 - (3) At what frequency does the magnitude of the transfer function reduce to unity? (4%)

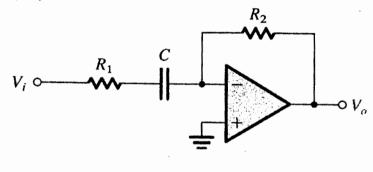


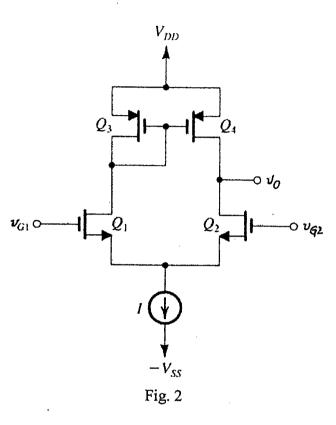
Fig. 1

- 2. It is required to design the active-loaded differential MOS amplifier of Fig. 2 to obtain a differential gain of 50 V/V. The technology available provides $\mu_n C_{ox} = 4\mu_P C_{ox} = 400 \ \mu A/V^2$, $|V_t|=0.5 \ V$, and $|V_A'|=20V/\mu m$ (channel length modulation effect) and $V_{DD}=V_{SS}=1V$. Use a bias current I=200 μ A and operate all devices at $|V_{OV}|=0.2V$ (overdrive voltage).
 - (1) Find the W/L ratios of the four transistors $(Q_1, Q_2, Q_3, \text{and } Q_4)$. (4%)
 - (2) Specify the channel length required of all transistors. (4%)
 - (3) If I is delivered by a simple NMOS current source operated at the same V_{OV} , for $V_{CM}=0$, what is the allowable range of v_0 ? (4%)

(背面仍有題目,請繼續作答)

編號:192,203,21D

國立成功大學103學年度碩士班招生考試試題


共5頁,第2頁

系所組別: 電機工程學系甲乙丁戊組、電腦與通信工程研究所丙丁組、電機資訊學院-微電奈米聯招

考試科目: 電子學

考試日期:0222, 節次:1

請於答案卷(卡)作答,於本試題紙上作答者,不予計分。 ※ 考生請注意:本試題可使用計算機。

- The open-loop gain of an amplifier has break frequencies at f_{p1} =100 kHz, f_{p2} =200 3. kHz, and $f_{p3}=1$ MHz. The low-frequency (or DC) gain is $A_0=800$, and the feedback factor is β =0.5. Please calculate
 - (1) The gain crossover frequency. (4%)
 - (2) The phase margin. (4%)
- An amplifier with open-loop voltage gain of 10⁴ and poles at 10³ Hz, 10⁵ Hz, and 4. 10⁶ Hz is to be compensated by the addition of a dominant pole to operate stably with a closed-loop gain of 30 dB with a 45° phase margin, what new pole frequency should be used? (6%)

編號: (92,203,210 國立成功大學103學年度碩士班招生考試試題 共5頁,第3頁 系所組別: 電機工程學系甲乙丁戊組、電腦與通信工程研究所丙丁組、電機資訊學院-微電奈米聯招 考試科目: 電子學 考試日期: 0222,節次: 1 ※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

5. (1) A second-order filter has the transfer function

$$T(S) = \frac{1}{S^2 + (10 + \alpha)S + 25}$$

Find the range of α for which the filter can operate stably? (4%)

(2) What type of this filter can be realized as the following transfer function? Explain why? (8%)

$$T(S) = \frac{S(S^2 + 0.01)(S^2 + 4)}{(S^2 + 0.8S + 0.52)(S^2 + 0.56S + 0.18)(S^2 + 0.56S + 0.86)}$$

- 6. A waveform generator circuit is shown in Fig. 6. If the op amps have saturation voltages of \pm 10 V, given C = 0.01 m F, R₁ = 10 k Ω , R₂ = 20 k Ω , and R = 50 k Ω .
 - (1) Sketch and label the waveforms v_1 and v_2 . (10%)
 - (2) Determine the frequency of waveform v_1 . (5%)

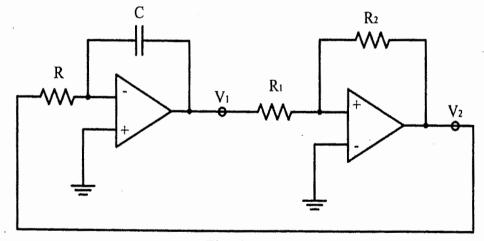
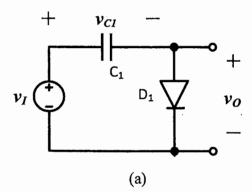


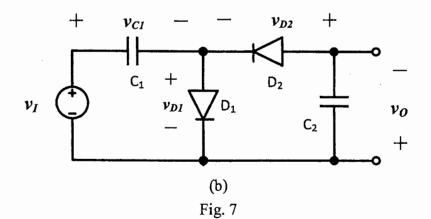
Fig. 6

7. Consider the circuit shown in Fig. 7 with parameters of $v_I = 5 \times \sin(\omega t)$ volts where $\omega = 2000\pi$ radians/sec, $C_1 = C_2 = 1\mu$ F and uncharged initially, the cut-in voltage of both diodes V_{γ} while the forward diode resistance $r_f = 0\Omega$, reverse breakdown voltage = 100 V, saturation current = 2.5×10^{-9} A.

(背面仍有題目,請繼續作答)

編號:19≥, 203,≥10	國立成功大學103學年度碩士班招生考試試題	共5頁,第4頁
系所組別: 電機工程學系甲乙	乙丁戊組、電腦與通信工程研究所丙丁組、電機資訊學院-微電	電奈米聯招
考試科目: 電子學	· · · ·	考試日期:0222 · 節次:1


※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。


- (1) What are the maximum and minimum voltage of v_o when $V_r = 0$ for Fig. 7(a)?
- (2) Assume $V_{\gamma} = 0$ for Fig. 7(a). Sketch waveforms of v_{c1} and v_o along with

 v_1 starting from t = 0 sec to 3 ms. (10%)

(4%)

(3) Assume $V_{\gamma} = 0.7$ V for Fig. 7(b). What are the maximum and minimum voltage of v_o ? (4%)

• • • •

- Set and Clk are V_{DD} . (7%)
- (2) Find the minimum W/L for both Q_5 and Q_6 such that switching is achieved when inputs Set and Clk are half of V_{DD} . (8%)

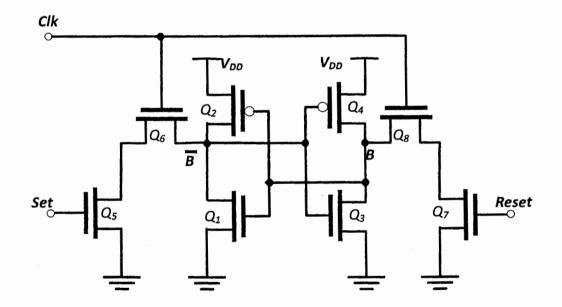


Fig. 8