※ 考生請注意：本試題可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

1，Please calculate the maximum power that the circuit of Figure 1 can deliver to a resistive load connected between A and B．（20\％）

Figure 1

Figure 2

2，By assuming that the circuit of Figure $\mathbf{2}$ is in steady state at $t=0^{-}$，please find $i(t)$ ．
3，As shown in Figure 3，please calculate the current i indicated in this circuit．（15\％）

Figure 3
※ 考生請注意：本試題可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

4．The circuit shown in Figure 4 is used to obtain maximum power transfer to the loading resistance R_{L} by means of adjusting the variable capacitive reactance X ．
（1）Determine the value of X if R_{L} is 20Ω ．（ 10% ）
（2）Solve the value of R_{L} if X is 0Ω ．（10\％）

Figure 4

5．Figure 5 shows a three－phase balanced $A C$ voltage source with positive phase sequence supplying a three－phase unbalanced load $\left(\mathbf{Z}_{a}=j 5 \Omega, \mathbf{Z}_{b}=10 \Omega\right.$ ，and $\left.\mathbf{Z}_{c}=-j 10 \Omega\right)$ ．Assume the root－mean－square value of the three－phase $A C$ voltage source is 240 V ．Take \mathbf{V}_{a} as the reference．
（1）Find the three line currents $\mathbf{I}_{a}, \mathbf{I}_{b}$ ，and \mathbf{I}_{c} ．（10\％）
（2）Obtain the readings of the two wattmeters that are properly connected at lines a and c ． （ 10% ）．
（3）Determine the total complex power absorbed by the unbalanced load．

Figure 5

