※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。
1．（15\％）Assume the operating cost function of the generating unit is $C_{i}=\alpha_{i}+\beta_{i} P_{i}+\gamma_{i} P_{i}^{2}$
For the control area contains n generators to provide total load demand P_{T} ，
I．specify the objective function of minimal operating cost C_{t} and its constraint without considering the loss．
II．Use the Lagrange method $L=C_{t}+\lambda\left(P_{T}-\sum_{i=1}^{n} P_{i}\right)$
Prove that the analytical solution for optimal λ is：

$$
\lambda=\beta_{i}+2 \gamma_{t} P_{i}=\frac{P_{T}+\sum_{i=1}^{n} \frac{\beta_{i}}{2 \gamma_{i}}}{\sum_{i=1}^{n} \frac{1}{2 \gamma_{i}}}
$$

2．（ 15% ）Consider a system with the one－line diagram shown in the figure below，the per－unit ratings of the generator， transformers，transmission line，and motor are listed as follows：

Generator：20MVA， $13.8 \mathrm{kV}, \mathrm{X}^{\prime \prime}{ }_{\mathrm{d}}=\mathrm{j} 0.1 \mathrm{pu}, \mathrm{X}^{2}=\mathrm{j} 0.1 \mathrm{pu}, \mathrm{X}^{0}=\mathrm{j} 0.05 \mathrm{pu}$
Transformer T_{1} ：20MVA， $13.8 \mathrm{kV}-69 \mathrm{kV}, \mathrm{X}_{1}=\mathrm{j} 0.1 \mathrm{pu}$
Transformer $T_{2}: 20 \mathrm{MVA}, 69 \mathrm{kV}-13.8 \mathrm{kV}, \mathrm{X}_{\mathrm{l}}=\mathrm{j} 0.1 \mathrm{pu}$
Transmission line ： $\mathrm{X}_{\text {line }}^{1}=\mathrm{X}_{\text {line }}^{2}=\mathrm{j} 0.1 \mathrm{pu}, \mathrm{X}_{\text {line }}^{0}=\mathrm{j} 0.3 \mathrm{pu}$ with 20MVA， 13.8 kV base
Motor：20MVA， $13.8 \mathrm{kV}, \mathrm{X}^{\prime \prime}=j 0.2 \mathrm{pu}, \mathrm{X}^{2}=j 0.2 \mathrm{pu}, \mathrm{X}^{0}=\mathrm{j} 0.1 \mathrm{pu}$
The neutrals of the generator，motor，and $\Delta-Y$ transformers are solidly grounded．

Generator

Assume the pre－fault voltage is $1 \angle 0^{\circ} \mathrm{pu}$ ，please derive the Thevenin equivalents of the zero－，positive－，and negative－sequence networks in per－unit as viewed from bus V_{5} ．Label all the per－unit voltages and impedances for the network diagram．

3．（10\％）A temporary three phase fault occurs away from sending end of bus as shown below：

Prove that the critical clearing angle $\delta_{\boldsymbol{c}}$ has the following relationship with the variables shown in the figure below $\cos \delta_{c}=\frac{P_{m}\left(\delta_{\text {max }}-\delta_{0}\right)+P_{3 \text { max }} \cos \delta_{\text {max }}-P_{2 \text { max }} \cos \delta_{0}}{P_{3 \text { max }}-P_{2 \text { max }}}$ ，where $P_{1_{\text {max }}}, P_{2_{\text {max }}}, P_{3_{\text {max }}}$ are the peaks of the power curve，

编號： 185
國立成功大學 103 學年度碩士班招生考試試題
系所組別：電機工程學系丙組
考試科目：電力工程
※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。 respectively．

4．（ 10% ）Derive the voltage conversion ratio $\mathrm{V}_{\mathrm{H}} / \mathrm{V}_{\mathrm{L}}$ for the step－up autotransformer，as shown below．

5．(10%) Prove $Z_{A}=3 Z_{Y}$ for the following two equivalent three－phase networks．

6．（10\％）Draw the equivalent circuits of（1）long－shunt diffentially compound DC generator（2）long－shunt diffentially compound DC motor．
※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。
7．（10\％）Prove the output voltage ripple ratio $\frac{\Delta \mathrm{V}_{0}}{\mathrm{~V}_{0}}$ of the following continuous－conduction mode（CCM） buck converter equal to $\frac{\pi^{2} \cdot(1-D)}{2} \cdot \frac{f_{c}{ }^{2}}{f_{s}{ }^{2}}$ ，where

D is the duty cycle of the main switch S ，
f_{s} is the switching frequency of the main switch S ，
fc is equal to $\frac{1}{2 \pi \sqrt{\mathrm{~L} \cdot \mathrm{C}}}$.
Note：ALL components used in this circuit are ideal．

8．(10%) Derive the maximum current value of the inductor L in the above CCM buck converter．

9．（10\％）Derive the minimum current value of the inductor L in the above CCM buck converter．

