編號: 188	國立成功大學 103 學年度碩士班招生考試試題	共 1 頁,第1頁
系所組別:電機工種	呈學系戊組	
考試科目:電儀表		考試日期:0222,節次:2
※考生請注意:本	試題可使用計算機	
1. (a). Describe three general categories of measurement. (9%)		
(b). Describe a	nd compare geometric mean and harmonic mean.	(6%)
(c). Describe la	st digit bobble. (5%)	
2. Resolve signals that differ by 40 dB for a <u>spectrum analyzer</u> (Bandwidth Selectivity is 11:1.		
The filter skirt is assumed to be straight between 3-dB and 60-dB points for simplicity).		

- (a) Derive the formula: -3 dB [(Offset $BW_{3dB}/2$) / ($BW_{60dB}/2 BW_{3dB}/2$)] × Diff_{60,3dB}. (7 %)
- (b) If the filter is given 4 kHz bandwidth, please find the maximum frequency difference of signals that can be resolved by this filter. (8%)
- 3. An <u>ohmmeter</u> circuit is shown below (**Fig. 1**). Assume $E_b = 2 V$, $R_1 = 20 k\Omega$, $R_2 = R_m = 15 \Omega$. (a) If the ohmmeter is in the reading of 0.5 FSD, find R_x . (7%)

(b) From (a), if E_b changes to 1.6 V, how to make the reading of the ohmmeter remain 0.5 FSD? (8%)

- Sketch circuit diagrams to show how a <u>voltmeter</u> (伏特計) and <u>ammeter</u> (安培計) should be connected to measure (a) a very high resistance (10%) and (b) a very low resistance (10%). Explain briefly.
- 5. Draw a circuit and waveforms to show how <u>capacitance</u> (電容) can be measured using a bridge. Explain. (10%)
- 6. Describe the theory of operation of the following impedance measurement techniques: (a) Auto balancing bridge, (b) Resonant, (c) I-V method, (d) TDR. What are the advantages and disadvantages of each technique? (20%)