※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

1．(15%) Solve the boundary value problem．
$y^{\prime \prime}-9 y=0, y(-4)=y(4)=\cosh 12$

2．（20\％）Solve the initial value problem
$y^{\prime \prime \prime}-y^{\prime \prime}-4 y^{\prime}+4 y=6 e^{-x}, y(0)=2, y^{\prime}(0)=3, y^{\prime \prime}(0)=-1$

3．（5\％）（a）What kind of singularity（if any）does
$f(z)=\frac{1}{2 z}+\frac{1}{(2 \mathrm{z})^{2}}+\frac{1}{(2 \mathrm{z})^{3}}+\cdots$
have at $z=0$
（10\％）（b）Let $f(z)=\frac{1}{z^{2}(z+2 i)}$
Find a Laurent series in powers of z which converges to f in region on $0<|z|<2$
4．(20%) Evaluate $I=\int_{0}^{\infty} \frac{x^{1 / 3}}{(x+1)^{2}} \mathrm{dx}$

5．（10\％）Let f be continuous on［ $-L, L$ ］and let f^{\prime} be piecewise continuous．Suppose $f(-L)=f(L)$ ．Prove that the Fourier series of f uniformly and absolutely converges to f ．

6．（20\％）Consider a circular membrance．Using polar coordinates，the particle of membrane at（ r, θ ）is assumed to vibrate vertical to the x, y plane，and its displacement from the rest position at time tis $z(r, \theta, t)$ ．The wave equation for this displacement function can be expressed as

$$
\frac{\partial^{2} z}{\partial t^{2}}=c^{2}\left(\frac{\partial^{2} z}{\partial r^{2}}+\frac{1}{r} \frac{\partial z}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} z}{\partial \theta^{2}}\right)
$$

Where c is a constant．Assume that：
甲，The rest position of the membrane be in the x, y plane with origin at the center with radius R ．
乙，The motion of the membrane is symmetric about origin，in which case z depends only on r and t ， i．e．$z(r, \theta, t)=z(r, t)$ and $\partial^{2} z / \partial \theta^{2}=0$ ．
丙，It is fastened onto a circular frame，i．e．$z(R, t)=0$ ．
丁，It is set in motion with given initial position $z(r, 0)=f(r)$ and velocity $\partial z(r, 0) / \partial t=g(r)$ ．
Solve this boundary value problem，i．e．find $z(r, t)$ ．

