編號: 178

國立成功大學 104 學年度碩士班招生考試試題

系所組別:電機工程學系乙組

考試科目:控制系統

第1頁,共1頁

考試日期:0211,節次:2

- ※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。 1. A unity feedback control system has the open-loop transfer function $G(s) = \frac{A}{s(s + \zeta \omega_n)}$. (20%) (a) Compute the sensitivity of the closed-loop transfer function to changes in the parameter A. (5%) (b) Compute the sensitivity of the closed-loop transfer function to changes in the parameter ζ . (5%) (c) Compute the sensitivity of the closed-loop transfer function to changes in the parameter ω_n . (5%) (d) If the unity gain in the feedback path changes to a value of positive $\beta \neq 1$, compute the sensitivity of
 - the closed-loop transfer function to changes in the parameter β . (5%)
- 2. Suppose a function \tilde{A} is defined by $\tilde{A}(\mathbf{M}_{n\times m}) \equiv \mathbf{A}_{n\times n}\mathbf{M}_{n\times m} + \mathbf{M}_{n\times m}\mathbf{B}_{m\times m}$ and η is an eigenvalue of \tilde{A} . Please show that $\eta_k = \eta_{ij} = \lambda_i + \mu_j$, for $i = 1, 2, \dots, n$ and $j = 1, 2, \dots, m$, where λ_i and μ_j are the eigenvalues of \mathbf{A} and \mathbf{B} , respectively. (10%)
- 3. (a) For a linear time-varying system, please give the definition that an impulse response matrix G(t, τ) is realizable.
 (4%)
 - (b) Please prove the theorem that a $q \times p$ impulse response matrix $G(t, \tau)$ is realizable if and only if $G(t, \tau)$ can be decomposed as $G(t, \tau) = M(t)N(\tau) + D(t)\delta(t-\tau)$, for all $t \ge \tau$, where M, N, and D are, respectively, $q \times n, n \times p$, and $q \times p$ matrices for some integer n. (16%)
- 4. Realize the lag-lead compensator $G_c(s) = \left(\frac{s+0.1}{s+0.01}\right) \left(\frac{s+1}{s+10}\right)$ with a passive network and an active network, respectively. (25%)
- 5. Using Laplace transform methods, solve for the state-transition matrix, the state vector, and the output y(t) of the following system for a step input u(t): (25%)

$$\mathbf{\dot{x}} = \begin{bmatrix} 0 & 1 \\ -8 & -6 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t); \quad y = \begin{bmatrix} 4 & 3 \end{bmatrix} \mathbf{x}; \quad \mathbf{x}(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$