第1頁，共1頁

※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。
1．A unity feedback control system has the open－loop transfer function $G(s)=\frac{A}{s\left(s+\zeta \omega_{n}\right)}$ ．
（a）Compute the sensitivity of the closed－loop transfer function to changes in the parameter A ．
（b）Compute the sensitivity of the closed－loop transfer function to changes in the parameter ζ ．
（c）Compute the sensitivity of the closed－loop transfer function to changes in the parameter ω_{n} ．
（d）If the unity gain in the feedback path changes to a value of positive $\beta \neq 1$ ，compute the sensitivity of the closed－loop transfer function to changes in the parameter β ．

2．Suppose a function $\tilde{\mathrm{A}}$ is defined by $\tilde{\mathrm{A}}\left(\mathbf{M}_{n \times m}\right) \equiv \mathbf{A}_{n \times n} \mathbf{M}_{n \times m}+\mathbf{M}_{n \times m} \mathbf{B}_{m \times m}$ and η is an èigenvalue of $\tilde{\mathrm{A}}$ ． Please show that $\eta_{k}=\eta_{i j}=\lambda_{i}+\mu_{j}$ ，for $i=1,2, \cdots, n$ and $j=1,2, \cdots, m$ ，where λ_{i} and μ_{j} are the eigenvalues of \mathbf{A} and \mathbf{B} ，respectively．
（10\％）
3．（a）For a linear time－varying system，please give the definition that an impulse response matrix $\mathbf{G}(\mathrm{t}, \tau)$ is realizable．
（b）Please prove the theorem that a $q \times p$ impulse response matrix $G(t, \tau)$ is realizable if and only if $\mathbf{G}(t, \tau)$ can be decomposed as $\mathbf{G}(t, \tau)=\mathbf{M}(t) \mathbf{N}(\tau)+\mathbf{D}(t) \delta(t-\tau)$ ，for all $t \geq \tau$ ，where \mathbf{M}, \mathbf{N} ，and \mathbf{D} are，respectively，$q \times n, n \times p$ ，and $q \times p$ matrices for some integer n ．

4．Realize the lag－lead compensator $G_{c}(s)=\left(\frac{s+0.1}{s+0.01}\right)\left(\frac{s+1}{s+10}\right)$ with a passive network and an active network，respectively．
（25\％）

5．Using Laplace transform methods，solve for the state－transition matrix，the state vector，and the output $y(t)$ of the following system for a step input $u(t)$ ：

$$
\dot{\mathbf{x}}=\left[\begin{array}{cc}
0 & 1 \\
-8 & -6
\end{array}\right] \mathbf{x}+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t) ; \quad y=\left[\begin{array}{ll}
4 & 3
\end{array}\right] \mathbf{x} ; \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

