※ 考生請注意：本試題可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。
1．Given the circuit shown in Figure 1，please find the equation for $\mathbf{i}(\mathbf{t}), \mathrm{t}>0 .(10 \%)$

Figure 1
2．Please determine the parameters \mathbf{R} and L so that the circuit shown in Figure 2 operates as a band－pass filter with an ω_{o} of $1000 \mathrm{rad} / \mathrm{sec}$ and a bandwidth of $50 \mathrm{rad} / \mathrm{sec}$ when we use $\mathrm{C}=1 \mu \mathrm{~F}$ ．（20\％）

Figure 2
3．Given the figure shown in Figure 3，please answer the following：
A．Find the transfer function $\left(\mathrm{V}_{\mathrm{o}}(\mathrm{s}) / \mathrm{V}_{\mathrm{s}}(\mathrm{s})\right.$ ）of the network．
B．What type of the filter is this circuit？
C．Given $\mathbf{R}_{2}=10 \mathrm{k} \Omega$ ，determine \mathbf{R}_{1} and \mathbf{C} if the desired cut－off frequency $\omega_{\mathrm{c}}=10 \mathrm{rad} / \mathrm{sec}$ with passband gain $=-20 .(20 \%)$

Figure 3

第2頁，共2頁

4．For the two circuits shown in Figure 4，obtain the transfer function $\mathbf{V}_{o}(s) / \mathbf{V}_{i}(s)$ ，the resonant frequency and the bandwidth of each circuit．（30\％）

Figure 4

5．Find the z parameters for the circuit shown in Figure 5．（20\％）

Figure 5

