編號: 179

國立成功大學 105 學年度碩士班招生考試試題

系 所:電機工程學系

考試科目:電路學

考試日期:0227,節次:1

第1頁,共2頁

※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

1. The circuit is shown in Fig. 1 with the following component values

 $R_1 = 1 \text{ k}\Omega$, $R_2 = 1000 \text{ k}\Omega$, $R_3 = 10 \text{ k}\Omega$, $R_4 = 100 \text{ k}\Omega$, $R_5 = 1 \text{ k}\Omega$, $R_6 = 2 \text{ k}\Omega$, and A = 10000.

- (a) Find the input equivalent resistance R_{in} . (10%)
- (b) Find the output equivalent resistance Rout. (10%)

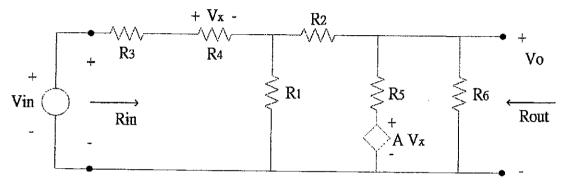


Fig. 1

- 2. The switch in Fig. 2 has been closed at position A for a long time. It is switched to position B at t = 0.
 - (a) Find i(0+) and v(0+). (10%)
 - (b) Find i(t) and v(t) for t > 0. (15%)

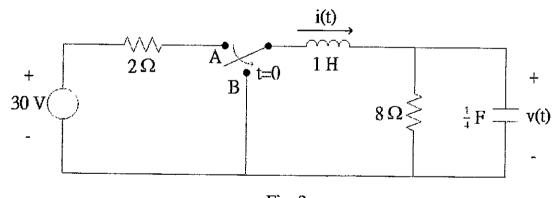


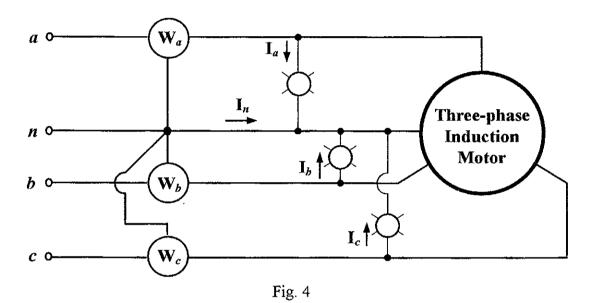
Fig. 2

3. The voltage across a 2-H inductor is v = 10(1 - t) V. Calculate the current flowing through it at t = 4 s. Assume i(0) = 2 A. (5%)

編號: 179

國立成功大學 105 學年度碩士班招生考試試題

系 所:電機工程學系


考試科目:電路學

第2頁,共2頁

考試日期:0227,節次:1

※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

- 4. Fig. 4 shows a three-phase four-wire line with a phase voltage of 120 V rms, with a positive phase sequence, supplying a balanced induction motor at 260 kVA at 0.85 pf lagging and three incandescent lamps. The three incandescent lamps with unity power factor are connected as follows: 24 kW from line a to the neutral, 15 kW from line b to the neutral, and 9 kW from line c to the neutral.
- (a) Obtain the readings of the three wattmeters (W_a , W_b , and W_c). (10%)
- (b) Calculate the three current phasors I_a , I_b , and I_c flowing through the three incandescent lamps. (10%)
- (c) Find the current phasor I_n in the neutral line. (10%)

5. An industrial load is modeled as a series combination of a resistance R and an inductance L as shown in Fig. 5. The measured voltage magnitudes of the three sinusoidal voltages using an ac voltmeter under 60-Hz steady state are: $|\mathbf{V}_s| = 145 \text{ V}$, $|\mathbf{V}_1| = 50 \text{ V}$, and $|\mathbf{V}_o| = 110 \text{ V}$. Calculate the values of L and R. (20%)

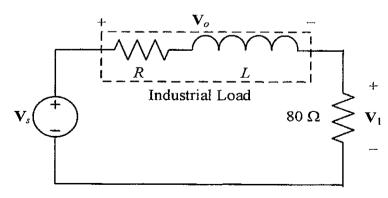


Fig. 5