國立成功大學 110學年度碩士班招生考試試題

編 號: 178

系 所:電機工程學系

科 目:資料結構

日 期: 0202

節 次:第2節

備 註:不可使用計算機

國立成功大學 110 學年度碩士班招生考試試題

編號: 178

系 所:電機工程學系

考試科目:資料結構 考試日期:0202,節次:2

第1頁,共2頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

1. For a two dimensional array A, if the location of A(4,3) is 1000 and A(3,5) is 1013. Assume that each element occupies 1 address. What is the location of A(2,2)? (10%)

2. Which of the choices DO NOT contain two equivalent expressions? Note that A^B is A^B . (15%)

(a) Infix A+B-C

Prefix -+ABC

(b) Postfix AB+CD-*

Prefix *+AB-CD

(c) Postfix AB^C*D-EF/GH+/+

Prefix $+-*^ABCD//EF+GH$

(d) Postfix $AB+C*DE--FG+^$

Prefix ^-*+ABC-DE+FG

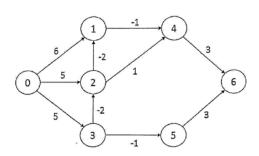
(e) None of the above

3. Read the following data in the given order: (30 %)

55, 45, 25, 35, 85, 95, 65, 75, 105, 15

(a) If you create a max heap for them, what will be the value in root?

(10%)


(b) If you create a 2-3 tree for them, what will be the value in root?

(10 %)

(c) If you create an AVL tree for them, what will be the value in root?

(10%)

4. Use the Bellman-Ford algorithm, STEP BY STEP, to find the shortest path and the length from node 0 to node 6 in the following graph. Note that you get 0 point without showing the result after each step. (15 %)

編號: 178 國立成功大學 110 學年度碩士班招生考試試題

系 所:電機工程學系 考試科目:資料結構

考試日期:0202,節次:2

第2頁,共2頁	
5.	Consider the merge sort and quick sort. Let L_1 and L_2 be two sorted lists of m and n elements,
	respectively. (15 %)
	 (a) What is the maximum number of comparisons needed for merging L₁ and L₂? (5 %) (b) What is the minimum number of comparisons needed for merging L₁ and L₂? (5 %) (c) Both merge sort and quick sort are suitable for external sorting. Right? Explain your answer. (5 %)
6.	Describe three key points for designing a good hashing function. (15 %)
	•
	*