國立成功大學 110學年度碩士班招生考試試題

編 號: 169

系 所:電機工程學系

科 目:控制系統

日 期: 0202

節 次:第2節

備 註:不可使用計算機

國立成功大學 110 學年度碩士班招生考試試題

系 所:電機工程學系 考試科目:控制系統

考試日期:0202,節次:2

第1頁,共1頁

編號: 169

- ※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。
- 1. Consider a closed-loop system described in Figure 1, where $C(s) = K \frac{s+a}{s+b}$, $G(s) = \frac{1}{s^2 + 4\zeta s + 4}$, and $0 < \zeta < 1$.
 - (a) What are the constraints placed on K, a, and b so that the system is both stable and Type 1? (12%)
 - (b) What are the constraints on a and b so that the system is both Type 1 and remains stable for every positive value for K? (12%)

Figure 1

- 2. Consider the plant described by $\dot{X} = \begin{bmatrix} 0 & 1 \\ 5 & -4 \end{bmatrix} X + \begin{bmatrix} 1 \\ 2 \end{bmatrix} u$ and $y = \begin{bmatrix} 2 & 1 \end{bmatrix} X$.
 - (a) Find the transfer function using matrix algebra.

(10%)

- (b) Suppose state feedback $\mathbf{u} = \begin{bmatrix} k_1 & k_2 \end{bmatrix} \mathbf{X}$, determine the constraints on k_1 and k_2 so that the closed-loop system is stable. (8%)
- (c) Suppose output feedback $u = k_3 y$, determine the constraints on k_3 so that the closed-loop system is stable. (8%)
- 3. The unity-feedback system with an open-loop transfer function $G(s) = \frac{K(s+\alpha)}{(s+\beta)^2}$, is to be designed to meet the following specifications: steady-state error for a unit step input $e_{ss} = 0.1$; damping ratio $\zeta = 0.6$; natural frequency $\omega_n = \sqrt{10}$ rad/sec. Find the values of K, α , and β . (25%)
- 4. The system shown in Figure 2 has $G_1(s) = \frac{1}{s(s+2)(s+4)}$. Use the Routh-Hurwitz criterion to find the values of K_1 and K_2 for which the system oscillates at a frequency of 2 rad/sec. (25%)

Figure 2