國立成功大學 111學年度碩士班招生考試試題

編 號: 174

系 所:電機工程學系

科 目: 線性代數

日 期: 0219

節 次:第3節

備 註:不可使用計算機

編號: 174

國立成功大學 111 學年度碩士班招生考試試題

系 所:電機工程學系 考試科目:線性代數

考試日期:0219,節次:3

第1頁,共2頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

- 1. (24 pts) Make each statement True or False and JUSTIFY each answer. 3 pts for each question. (Correct answer for 2 pts and suitable justification for 1 pts.)
 - (a). A is $n \times n$ matrix. If $\lambda+5$ is a factor of the characteristic polynomial of A, then 5 is an eigenvalue of A.
 - (b). If A is 3×3 , with columns a_1 , a_2 , and a_3 , then det A equals the volume of the parallelepiped determined by a_1 , a_2 and a_3 .
 - (c). If **u** is in the row space and the column space of an $n \times n$ matrix **A**, then $\mathbf{u} = \mathbf{0}$. **A** is $n \times n$ matrix and **A** is diagonalizable if $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$ for some matrix **D** and some invertible matrix **P**.
 - (d). If A is similar to B, then A^2 is similar to B^2 .
 - (e). The best approximation to y by elements of a subspace W is given by the vector y $\text{proj}_W y$.
 - (f). Not every orthogonal set in \Re^n is linearly independent.
 - (g). If z is orthogonal to \mathbf{u}_1 and to \mathbf{u}_2 and if $W = \text{Span } \{\mathbf{u}_1; \mathbf{u}_2\}$, then z must be in W^{\perp} .
 - (h). If ${\bf b}$ is in the column space of ${\bf A}$, then every solution of ${\bf A}{\bf x}={\bf b}$ is a least-squares solution.
- 2. (a). (5 pts) Compute the following determinants: $A = \begin{bmatrix} 9 & 1 & 9 & 9 & 9 \\ 9 & 0 & 9 & 9 & 2 \\ 4 & 0 & 0 & 5 & 0 \\ 9 & 0 & 3 & 9 & 0 \\ 6 & 0 & 0 & 7 & 0 \end{bmatrix}$
 - (b). (10 pts) Find \mathbf{E}^{2022} where $\mathbf{E} = \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix}$.
- 3. (15 points) Let $W = \text{Span } \{\mathbf{x}_1, \mathbf{x}_2\}$, where $\mathbf{x}_1 = [-1, -2, 0]^T$ and $\mathbf{x}_2 = [-1, 3, -1]^T$.
 - (a). (8 points) Use the Gram-Schmidt process to find an orthogonal basis $\{\mathbf{u_1}, \, \mathbf{u_2}\}$ for W.
 - (b). (7 points) Let $\mathbf{y} = [2, -4, 1]^T$. Decompose \mathbf{y} as $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$, where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp} .

編號: 174

國立成功大學 111 學年度碩士班招生考試試題

系 所:電機工程學系 考試科目:線性代數

考試日期:0219,節次:3

第2頁,共2頁

4. (46 pts) Let
$$\mathbf{A} = \begin{bmatrix} 7 & 1 \\ 0 & 0 \\ 5 & 5 \end{bmatrix}$$
. Find

- (a) Find the LU factorization of A. (5 pts)
- (b) Find the QR factorization of A. (5 pts)
- (c) Diagonalize $A^{T}A$. (5 pts)
- (d) Find the maximum value of the quadratic form $x^T(A^TA)x$ subject to the constraint $x^Tx = 5$ and find a unit vector at which this maximum value is attained. (5 pts)
- (e) Find a singular value of decomposition (SVD) of A. (5 pts)
- (f) Find an orthonormal basis for (Col A)[⊥]. (5 pts)
- (g) Find A+ (reduced SVD of A). (6 pts)
- (h) Find the least-squares solution for $Ax = [1, 0, 1]^T$. (5 pts)
- (i) Find the orthogonal projection of $b = [1, 0, 1]^T$ on Col A. (5 pts)