國立成功大學

114學年度碩士班招生考試試題

編 號: 121

系 所:電機工程學系

科 目:電磁學

日 期: 0210

節 次:第2節

注 意: 1.可使用計算機

2.請於答案卷(卡)作答,於 試題上作答,不予計分。

Problem 1 (15)

Consider two concentric spherical shells as shown in the figure with the following characteristics: The inner shell has a radius a, carries a total charge of +Q distributed uniformly over its surface. The outer shell has a radius b, carries a total charge of -Q distributed uniformly over its surface. The region between the shells is filled with a dielectric material of permittivity ε for a < r < (a + b)/2, while the rest region for (a + b)/2 < r < b is in air. (a) Find the total electrostatic potential energy stored in the system. (b) Find the polarized volume charge density in the dielectric material and the polarized surface charge density at r = a and r = (a + b)/2. (c) Determine the electric field induced by the polarized charges for a < r < b.

Problem 2 (15)

For the parallel-plate capacitor given in the figure to the right-hand side, suppose a charge density

$$\rho_v = \rho_0 \sin\left(\frac{\pi x}{2d}\right)$$

is distributed between the plates. (a) Derive the expressions for the potential and electric field in the capacitor. (b) Find the capacitance per unit area.

$$x = d \frac{V_0}{\varepsilon_0, \rho_v(x)}$$

Problem 3 (20)

A current density $\vec{J} = J_z \hat{a}_z$ in a non-magnetic region is distributed such that J_z is a function of ρ for $0 < \rho \le 1$ in the cylindrical coordinate system, while $J_z = 0$ for $\rho > 1$. Assume the magnetic vector potential is given by $\vec{A} = -\frac{\mu_0}{9} \, \rho^3 \hat{a}_z$ for $0 < \rho \le 1$. (a) Find the magnetic energy stored within the volume defined by $0 < \rho \le 1$, $0 < \phi < 2\pi$ and $0 \le z \le 1$. (b) Determine the magnetic vector potential in the region where $\rho > 1$.

Problem 4 (15)

In the setup shown in the figure, a current I is uniformly distributed in an infinitely long cylinder with radius a, flowing in the positive x-direction. The axis of the cylinder is located at a distance h above an infinitely large, grounded conducting plane in free space, where $a \ll h$.(a) Find the expression for the magnetic field intensity $\vec{H}(x,y,z)$ in the region above the grounded plane and external to the cylinder. (b) Find the total inductance per unit length. (c) Find the surface current density on the grounded plane.

Problem 5 (20)

For the circuit loaded with 30Ω and 6.367 nH shown in the figure below, where Z_0 is the characteristic impedance of the transmission line, determine (a) the reflection coefficient at load, (b) the standing wave ratio, (c) the input impedance Z_{in} at the sending end of the transmission line, (d) the instantaneous voltage across the load, and (e) the time-average power and the peak power over the load.

Problem 6 (15)

In a 5 cm \times 4 cm air-filled rectangular waveguide, the longitudinal field components of a propagation mode at z = 0 are given by

$$E_z = 200 \sin(40\pi x) \sin(25\pi y) \cos(20\pi \times 10^9 t)$$
 V/m, and $H_z = 0$,

where x and y are the spatial coordinates in the transverse directions.

- (a) Identify the propagation mode and its cutoff frequency.
- (b) Find the wavelength along the propagation direction.
- (c) Find the wave impedance of the mode.

Some formula for your reference:

$$\nabla \cdot \vec{A} = \frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho A_{\rho}) + \frac{1}{\rho} \frac{\partial A_{\phi}}{\partial \phi} + \frac{\partial A_{z}}{\partial z}$$

$$\nabla \times \vec{A} = \left[\frac{1}{\rho} \frac{\partial A_{z}}{\partial \phi} - \frac{\partial A_{\phi}}{\partial z} \right] \hat{a}_{\rho} + \left[\frac{\partial A_{\rho}}{\partial z} - \frac{\partial A_{z}}{\partial \rho} \right] \hat{a}_{\phi} + \frac{1}{\rho} \left[\frac{\partial (\rho A_{\phi})}{\partial \rho} - \frac{\partial A_{\rho}}{\partial \phi} \right] \hat{a}_{z}$$

$$\nabla \cdot \vec{A} = \frac{1}{r} \frac{\partial}{\partial r} (r^{2} A_{r}) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (A_{\theta} \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial A_{\phi}}{\partial \phi}$$

$$\nabla \times \vec{A} = \frac{1}{r \sin \theta} \left[\frac{\partial (A_{\phi} \sin \theta)}{\partial \theta} - \frac{\partial A_{\theta}}{\partial \phi} \right] \hat{a}_{r} + \frac{1}{r} \left[\frac{1}{\sin \theta} \frac{\partial A_{r}}{\partial \phi} - \frac{\partial (r A_{\phi})}{\partial r} \right] \hat{a}_{\theta} + \frac{1}{r} \left[\frac{\partial (r A_{\theta})}{\partial r} - \frac{\partial A_{r}}{\partial \theta} \right] \hat{a}_{\phi}$$