- 1. (a) What are the two basic distinctions between a junction and an MOS capacitor?(b) Describe how to make crossovers in the fabrication of bipolar and MOS integrated circuits, respectively.
 - (c) Show that g_m of an enhancement MOSFET can be expressed as $g_m = 2I_D/(V_{GS}-V_T)$, where V_T is the threshold voltage.
 - (d) Draw the small-signal model of a pn diode for both forward and reverse bias and explain the physical significance of each element. (16%)
- 2. For the circuit shown in Fig. 1(a), sketch the load line of Q_1 and the transfer curve of the circuit for $V_{DD} = 6$ V, where Q_1 and Q_2 are identical transistor described by Fig. 1(b). (12%)
- 3. For the BJT inverter shown in Fig. 2, sketch the transfer characteristics and determine the noise margins. (10%)
- 4. (a) The system shown in Fig. 3(a) is an N:1 synchronous counter. Find the value of N and verify its operation with $Q_0 = Q_1 = 0$ as initial state.
 - (b) Design an encoder satisfying the truth table shown in Fig. 3(b), using a diode matrix. (12%)
- 5. A transistor having $h_{fe} = \beta_0 = 125$, $f_T = 300$ MHz, $C_c = C_{\mu} = 0.5$ PF and $r_0 \rightarrow \infty$ is used in a common-emitter circuit and biased at $I_{CQ} = 1$ mA. For signal source resistance $R_S = 300 \, \Omega$ and collector load resistance $R_C = 1.2 \, \text{K}_{\Omega}$, determine the midband gain $A_{V0} = V_0/V_s$ and upper 3-dB frequency fH. (15%)
- 6. The FET in the circuit shown in Fig. 4 has $g_m = 1 \text{ mU}$, $r_d = 20 \text{ K}\Omega$.

 - (a) Identify the feedback topology.
 (b) Find the input and output circuits without feedback, but taking the loading into account. Find (c) GMF=Io/Vs, and (d) AVF=Vo/Vs. (15%)
- 7. (a) Sketch the circuit diagram of a simple current mirror, and explain how this circuit acts as a current source.

 - (b) Draw the circuit diagram of a simple instrumentation amplifier using a single OP AMP. What are the resistances seen by each input source?
 (c) Sketch the circuit of a noninverting Schmitt trigger. Find expressions for the threshold levels V1 and V2.
 - (d) Draw the circuit of a class B push-pull power amplifier. State three advantages of class B over class A. (20%)

Fig. 2

Fig. 4

Fig. 1

Inputs				Outputs			
w,	W ₂	W ₁	W _•	γ,	γ,	Υ,	γ,
0	0	0	1	0	1	1	1
0	0	1	0	1	1	1	0
0	1	0	0	1	1	0	0
1	0	0	٥	0	0	1	1

Fig. 3