## 國立成功大學八十 學年度體机程確確試(控制工程) 試題)

This entrance examination includes three parts: Part I: Digital Control (25%); Part II: Linear Systems (25%); Part III: Classical Control (50%).

#### Part I: Digital Control

- 1. Find the final value of  $C(z) = z^2/[(z-1)(z^2-0.4z-0.96)]$ . (5%)
- 2. For a standard 2nd-order system, the poles in z-plane are  $z_{1,2} = re^{\pm j\theta}$ , the associated poles in s-plane are  $s_{1,2} = -\zeta \omega_n \pm j \omega_n \sqrt{1-\zeta^2}$ , determine  $\zeta$  and  $\omega_n$ , if r,  $\theta$ , and the sampling period T are given. (8%)
- 3. The characteristic equation of a system is 1+KG(z)=0, where  $G(z)=Z[G_h(s)G_o(s)]$ ,  $G_h(s)$  is the transfer function of Zero-Order-Hold,  $G_o(s) = 1/[s(s-1)]$ , and the sampling period T = 1Sec. Use Jury's stability test to determine the range of K. (12%)

## Part II: Linear Systems

4. Lemma: Let  $G_1(s)$  and  $G_2(s)$  be, respectively,  $q \times p$  and  $p \times q$  rational function matrices. Then we have  $det(I_p + G_2(s)G_1(s)) = det(I_q + G_1(s)G_2(s))$ , where  $I_p$  and  $I_q$ are  $p \times p$  and  $q \times q$  identity matrices, respectively.

Theorem: Consider the following feedback systems, if  $det(I_q + G_1(s)G_2(s)) \neq 0$ ,

then the transfer function matrix of the feedback system is given by

 $G_{CL}(s) = G_1(s)(I_p + G_2(s)G_1(s))^{-1}$  $= (I_q + G_1(s)G_2(s))^{-1}G_1(s).$ 

Prove this Theorem.

(Hint: you can use and do not have to prove the Lemma.) (10%)

5. Definition: Let  $\Psi(t)$  be any fundamental matrix of X = A(t)X(t), then  $\Phi(t,t_o) \equiv$  $\Psi(t)\Psi(t_o)^{-1}$ , for all  $t, t_o$  in  $(-\infty, +\infty)$ , is the state transition matrix of X = A(t)X(t). (a) From  $\Phi(t,\tau)$ , show how to compute A(t). (8%)

(b) Show that  $\Phi(t,t_o)$  is uniquely determined by A(t) and is independent of the  $\Psi(t)$ chosen. (7%)

### Part III: Classical Control

6. Given the unit-step feedback system shown in Fig. / where

$$G(s) = \frac{1}{s(1+0.5s)(1+s)},$$

(i) find the gain margin  $G_m$ , (10%)
(ii) determine the stability of the closed-loop system based on the Nyquist stability criterion. (Note that some necessary explanations are required, and the entire (10%) Nyquist plot in not necessary.)

# 國立成功大學/)十學年度

7. Given the system shown in Fig.2, plot the output responses at steady state for r(t) being a unit-step function r(t) = u(t) and a ramp function r(t) = tu(t), respectively. (Hint: Determine the steady-state error first.)



8. The block diagram of a control system is shown in Fig. 3. Draw the root locus plot of the system with K as varying parameter  $(0 \le K \le \infty)$  and particularly show (i) the starting and ending points, (ii) the real-root branches, (iii) the center of gravity, (iv) the asymptotics, (v) the breakaway points and the breakaway gain  $(K_b)$ , (vi) the marginal gain  $(K_m)$  and the associated roots on the imaginary axis.

(20%)

