國立成功大學八十學年度電机研究所考試(電子學 試題) # 1 頁

- 1. (a) Explain base-width modulation (the Early effect) and its influence.
 - (b) What do the acronymns EPROM and EPROM mean?
 - (c) Define f_B and f_T . What is the relationship between f_B and f_T ?
 - (d) What is the significance of the threshold voltage 4 in enhancementmode and depletion-mode MOSFET's. (16%)
- 2. A bipolar transistor is biased at $I_c = 0.5 \, \text{mA}$ and has $\beta_o = 1.50$.
 - (a) Determine Im and In at room temperature.
 - (b) The input resistance hie = 7.6 km. Find rb.
 - (c) A load resistance $R_c = 2 \text{ K}\Omega$ is used and the transistor is driven from a 300- Ω source and operated in common-emitter configuration. Estimate the voltage gain. (12%)
- 3. (a) For the circuit shown in Fig. 1, verify that $Y = \overline{ABC}$.
 - (b) If B=21, what is the fan-out?
 - (c) What is the average power dissipated by the gate assuming Y = V(I) 50 percent of the time? (12%)
- 4. The circuit in Fig. 1 is designed with $V_{cc} = L t V$, $R = 30 \, k\Omega$, and $R_E = 1 \, k\Omega$. Q_1 and Q_2 are identical transistors, and the related parameters are $\beta_T = 200$, $\beta_0 = 200$, $V_A = \infty$, and $V_B = 0$.
 - (a) Determine Ici.
 - · (b) What is the percentage change in Ic1 if Vcc increases by 0.3v? (12%)
- 5. The transistors in the circuit shown in Fig. 3 are identical and have $r_{\pi} = 4 \, \text{KN}$ and $\beta_o = 200$.
 - (a) Determine the value of f_L for each stage, assuming $C_{B1} = C_{B2} = /\mu F$ and $C_{E1} = C_{E2} = /00 \,\mu F$.
 - (b) What is the lower half-power frequency of the cascade? (12%)
- 6.(a) For the circuit shown in Fig. 4, determine T, AoL, and AF.
 - (b) Evaluate Rof. The MOSFETS have g= 1mt, k= 20 Ks. (12%)

053

國立成功大學八十學年度電机研究所考試(電子學

- 7. For the oscillator shown in Fig. t, find the frequency of oscillation and the minimum value of R. (12%)
- 8. For the logic diagram of the synchronous counter shown in Fig. 6 with initial state $Q_0 = Q_1 = Q_2 = 0$.

 - (a) Write the truth table of Q_0 , Q_1 , and Q_2 after each pulse. (b) This system is a N:1 counter, determine the value of N.

