國立成功大學八十一學年度沒格研究所考試(

電磁學 試題) 共 2 頁

請勿著急想做完全部試題,儘量做即可。 Good Luck.

* Useful constants:

$$\varepsilon_0 = 10^{-9}/(36\pi) \text{ (F/m)};$$

$$\mu_0 = 4\pi \times 10^{-7} (H/m);$$

$$\sqrt{\mu_{\rm O}/\varepsilon_{\rm O}}=120\pi\,(\Omega)$$

1. Maxwell's equations and plane wave problems:

- (a) Write the differential form of the Maxwell's equations.
- (b) Which term in the Maxwell's equations is the displacement current density term?
- (c) Explain the physical meaning of the displacement current.
- (d) Write the mathematical form of homogeneous (source-free) Helmholtz's equation.
- (e) Explain what is the TEM wave.
- (f) Write the mathematical form of a z-direction propagating TEM wave.
- (g) Show that the TEM wave (f) satisfies the Helmholtz's equation (d).

2. A parallel-plate capacitor of area S is filled with three different lossy dielectrics.

- (a) Determine the current density J between the plates.
- (b) Determine the electric field E in each layer.
- (c) Determine the surface charge densities ρ_S on the upper and lower plates.
- (d) Use (c) (with S) and voltage V₀ to determine the capacitance of this capacitor.

3. A 10-Hz ELF (extremely low frequency) linearly polarized plane wave propagates into the seawater at z-direction. The propagation constant γ of the TEM wave in a lossy medium $(\mu, \varepsilon, \sigma)$ is

$$\gamma = \alpha + \mathrm{j}\beta = \mathrm{j}\omega[\mu(\varepsilon + \sigma/\mathrm{j}\omega)]^{1/2} = \mathrm{j}\omega[\mu\varepsilon(1 + \sigma/\mathrm{j}\omega\varepsilon)]^{1/2}$$

- (a) Determine the attenuation constant (α), phase constant (β) and skin depth (δ).
- (b) Determine the phase velocity (up) and group velocity (ug) of this plane wave in the seawater.
- (c) Explain the dispersion of the EM wave in the lossy medium.
- (d) Is this ELF wave dispersive in the seawater? Why?
- (e) If the submarine is located 100 m below the seawater surface, determine how many dB decay of the EM wave power received by the submarine (compared with the EM wave power just below the surface).

 (power-ratio (dB) = 10 log(power-ratio))

Hint: Calculate the value of $(\sigma/\omega\varepsilon)$ first to make a good approximation of γ .

087

國立成功大學八十一學年度宣格研究所

電磁學 試題)

- A dipole antenna having a terminal input-impedance 72 Ω at 1-GHz is connected to a transmitter having a 300 Ω output impedance.
 - (a) Determine the reflection coefficient Γ and the VSWR.

We want to use a quarter-wave section of the microstrip line with a substrate dielectric $(\varepsilon_{\Gamma} = 4, \mu_{\Gamma} = 1)$ to match the 72 Ω load to the 300 Ω transmitter output-impedance. If the substrate thickness d is 1 mm, determine

- (b) the required length l of this quarter-wave section microstrip line,
- (c) the required characteristic impedance Z₀ of this microstrip line,
- (c) the required width W of this microstrip line.

Hint: Use the approximated microstrip-line Z_0 formula: $Z_0 = (d/W)\sqrt{\mu/\epsilon}$

dipole antenna

A uniform plane wave from the air is incident normally on the boundary of the dielectric ($\mu_{\rm r}=1$, $\varepsilon_{\rm r}=4$) and air. We write the E-field of the incident wave, reflected wave, and transmitted wave as

$$E^{i} = E_{ix}e^{-j\beta z}$$
, $E^{r} = E_{rx}e^{-j\beta z}$, $E^{t} = E_{tx}e^{-j\beta z}$

- (a) Determine the H-field of the incident wave, reflected wave, and transmitted wave,
- (b) If Eix is known, use the boundary conditions (tangential E & H fields continuous)
- to determine E_{IX} and E_{IX} . (c) If the average power density P_i of the incident plane wave is 1 W/m², find the average power densities $P_r & P_t$ of the reflected wave and transmitted wave.

 $\delta c 0$