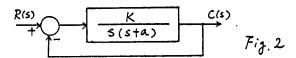

國立成功大學八十一學年度電機工程研考試(控制工程試題)

Consider the pipe-welding system shown in Fig. 1.

 (a) Write the closed-loop system characteristic equation.
 (b) Use the Jury test to determine the range of K for stability.
 (c) Let K=10, find the damping ratio, the natural frequency, and the time constant for the transient response of the closed-loop system.



2. Consider the feedback system shown in Fig. 2.

(a) Find the value of K and = +- ---info the following frequency domain specifications.

(b) For the

inte the peak

3. (a) Sketch the inverse Nyquist plot of a unity feedback system characterized by the open-loop transfer function

$$G(s) = \frac{K}{s(1+o.1s)(1+s)}$$

(b) Find the value of M_r for K=1. (c) By what factor should the gain K be changed so that M_r (d) Determine the value of ω_r for the new setting of gain.

4. A discrete-time system has state and output equations given by $x_i(k+1) = 0.25x_i(k) + u(k)$ $x_2(k+1) = 0.125x_i(k) + 0.125x_2(k) + u(k)$

$$y(k) = [0.5 \ 0] \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix}$$

Solve for the output y(k) when u(k)=unit impulse and $\underline{x}(0)=\underline{0}$.

Show that controllability and observability of linear time-varying dynamical equations are invariant under any equivalence transformation

 $\bar{\chi} = P(t)\chi$ where P is nonsingular for all t and continuously differentible in t.