國立成功大學 82 學年度 饱梅研究所考試(電磁學 (7)試題)共 2 月 ### 請勿著急想做完全部試題,儘量做即可。 Good Luck. #### * Useful constants: $$\varepsilon_{\rm O} = 10^{-9}/(36\pi) \; ({\rm F/m}); \quad \mu_{\rm O} = 4\pi \times 10^{-7} \; ({\rm H/m}); \quad \sqrt{\mu_{\rm O}/\varepsilon_{\rm O}} = 120\pi = 377 \; (\Omega)$$ C = 3 x 10⁸ m/s ### 1. Maxwell's Equations: - (a) Write the differential form and the integral form of the Maxwell's equations. - (b) Indicate the displacement current density term in the Maxwell's equations and explain the physical meaning of the displacement current. - (c) Write the mathematical form of homogeneous (source-free) Helmholtz's equation. - (d) Explain what is the TEM wave and Write the mathematical form of a z-direction propagating TEM wave. - (e) Show that the TEM wave (d) satisfies the Helmholtz's equation (c). ### An antenna system radiates a <u>circular-polarization (CP) far-zone EM wave</u> in the free space. The Eθ field of this far zone CP plane wave is (in spherical coordinates) $$E_{\theta}(r, \theta) = E_{O}(e^{-j\beta r}/r)\sin\theta$$ - (a) Write the E_{Φ} field component. - (b) Write the H field components (attention: There are two H field components). - (c) What is the time average power density at the distance r from the antenna? - (d) If $E_0 = 1$, determine the input average power of the antenna. Note: $$\int_{0}^{\pi} [\sin \theta]^{3} d\theta = 4/3$$ - 3. A radar system operates at 10 GHz. The radar antenna has a directive gain (G_D) of 40 dB and a radiation efficiency (η_r) of 90%. The minimum detectable signal power in this radar system is 1 pW. If this radar is designed to be able to detect an airplane (with a backscatter cross section $\sigma_{bs} = 5 \text{ m}^2$) at a distance 100 km, - (a) determine the minimum input power needed to be fed to the radar antenna. - (b) determine the radiation power density from the radar antenna at the airplane. * The radar equation is: $$\frac{P_L}{P_t} = \frac{\sigma_{bs} \lambda^2}{(4\pi)^3 r^4} G_D^2$$ # 國立成功大學 82 學年度電機研究所考試(電磁學 (7) 試題)第2頁 - 4. The following figure shows a microstrip output-matching network (50- Ω system) for the FET of a 1-GHz high-frequency amplifier. The S₂₂ of the FET is $0.5 \angle 120^{\circ}$. The matching network is to let the reflection coefficient Γ_L equal to (S₂₂)*. By using the Smith chart technique, it is found that $I_1 = 0.166 \lambda$ will let $\Gamma_1 = 0.5$ (the characteristic impedance of the I_1 section is $Z_{10} = 50 \Omega$). - (a) Determine the impedance Z_1 seen into the direction as shown in the figure. - (b) What is the simplest way to match Z_1 to the load Z_L ? Determine the length (in wavelength) and the characteristic impedance Z_{20} of the section I_2 . - (c) If the dielectric constant of the substrate $\varepsilon_{\Gamma} = 2.5$ and the substrate thickness h = 1 mm for the microstrip line, determine the <u>length</u> of l_1 and l_2 (in mm) by using the simple formula of the microstrip line in the textbook (D. K. Cheng). - (d) Determine the width of l_1 and l_2 (in mm). #### 5. Waveguide problem: - (a) Explain the meaning of the TE and TM modes in the waveguide. - (b) Write the E & H fields of TE₀₁ mode of an air-filled rectangular waveguide (a x b). - (b) If a = 2 cm & b= 2 cm, determine the cutoff frequency (f_c) of the TE₀₁ mode. - (c) Determine the cutoff frequency of the dominant mode in this waveguide. - (d) If this waveguide operates at 8 GHz, will the TE₀₁ mode propagate in the waveguide? Why? - * The TE_{mn} modes fields of the waveguide are $$E_{X} = (j\omega\mu/h^{2})(n\pi/b)H_{0}\cos(m\pi x/a)\sin(n\pi y/b)$$ $$E_y = -(j\omega\mu/h^2)(m\pi/a)H_0 sin(m\pi x/a)cos(n\pi y/b)$$ $$H_{X} = (\gamma/h^{2})(m\pi/a)H_{0}\sin(m\pi x/a)\cos(n\pi y/b)$$ $$H_V = (\gamma/h^2)(n\pi/b)H_0\cos(m\pi x/a)\sin(n\pi y/b)$$ $$h^2 = (m\pi/a)^2 + (n\pi/b)^2$$ $$\gamma = j\beta = j[\omega^2 \mu \varepsilon - h^2]^{1/2}$$