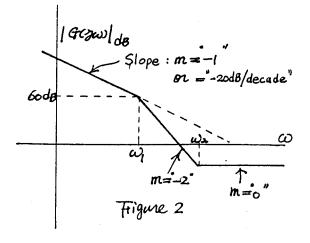

## 國立成功大學八十二學年度爾机工程考試(控制工程 試題)其/頁


- 1. Suppose  $y(s) = [(3s+5)/(s^2+2s+5)]r(s)$  and r(s) = 1/s, please determine y(t), the peak time  $(t_p)$ , and the maximum overshoot  $(M_p)$ , where  $\dot{y}(t=t_p) = 0$  and  $M_p = y(t_p) 1$ . (20%)
- 2. For the system shown in Figure 1, where  $G(s) = (s+1)/(s^2(s+3))$  and  $G_1(s) = (s+1)/(s+2)$ . Please determine the system type. (10%)
- 3. The magnitude asymptote of a Bode plot of G(s) is shown in Figure 2. Please determine G(s) in terms of  $\omega_1$  and  $\omega_2$ , where all zeros and poles of G(s) are in left half plane and are real. (10%)
- 4. Assume an open loop  $G(s) = \omega_n^2/(s(s+2\varsigma\omega_n))$  with unity feedback. Please show that the phase margin  $PM = tan^{-1}(2\varsigma/\sqrt{\sqrt{1+4\varsigma^4}-2\varsigma^2})$ . (10%)
- 5. Please determine the Z-transform of the transfer function of the zero-order hold and explain its physical meaning. (12%)
- 6. The first-order hold can be realized by

$$e_n(t) = e(nT) + e'(nT)(t - nT), \quad n = 0, 1, 2, ...$$

where  $nT \le t < (n+1)T$  and  $e'(nT) = \{e(nT) - e[(n-1)T]\}/T$ . If the input of the first-order hold is e(t) = 1, as t = 0; and e(t) = 0, as  $t \ne 0$ . Please determine and plot the output  $e_{out}(t)$  of the first-order hold. (12%)

- 7. Let  $A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$ , please find sin(At). (10%)
- 8. Consider a system,  $\dot{X}=AX+BU$  and Y=CX+DU. Let  $\bar{X}=PX$ , where P is a nosingular matrix. Please determine the equivalent system,  $\dot{\bar{X}}=\bar{A}\bar{X}+\bar{B}U$  and  $Y=\bar{C}\bar{X}+\bar{D}U$ . Please prove that the transfer function matrices of these two systems are the same. (16%)





094