國立成功大學八十四學年度電機研究所考試(電磁波(丁)試題)第/頁

* Useful constants:

$$\varepsilon_{\rm O} = 10^{-9}/(36\pi) \; ({\rm F/m}); \qquad \mu_{\rm O} = 4\pi \; {\rm x} \; 10^{-7} \; ({\rm H/m}); \qquad \sqrt{\mu_{\rm O}/\varepsilon_{\rm O}} = 120\pi \; (\Omega)$$

1. Maxwell's Equations: (30%)

- (a) Write down Maxwell's equations in a lossless medium (μ , ϵ) with the impressed sources (ρ_i , \bar{J}_i).
- (b) Indicate which term in (a) is the displacement current density and briefly explain the physical meaning of the displacement current.
- (c) Derive the inhomogeneous wave equations of the E field from (a). Note: $\nabla \times \nabla \times \vec{E} = \nabla (\nabla \cdot \vec{E}) \nabla^2 \vec{E}$
- (d) Derive the time-harmonic wave equation (Helmholtz equation) of (c).
- (e) By defining the scalar and vector potentials (Φ, \vec{A}) and using the Lorentz condition, the time-harmonic wave equations of (E, H) fields can be transformed to the wave equations of (Φ, \vec{A}) . It can be derived that

$$\Phi = \frac{1}{4\pi\varepsilon} \int_{V} \frac{\rho_{i} e^{-jkR}}{R} dv' \qquad \bar{A} = \frac{\mu}{4\pi} \int_{V} \frac{\bar{J}_{i} e^{-jkR}}{R} dv$$

Write down the Lorentz condition and explain that the Lorentz condition is consistent with the continuity equation.

2. A microstrip transmission line is shown in the following figure. (15 %)

- (a) Explain why the microstrip line can not support a pure TEM guided wave.
- (b) If the substrate is very thin, we can assume that the quasi-TEM wave propagates in a transmission line which means that the fields are essentially the same as those of the static case. Draw a figure to illustrate an approximated E and H field distribution over the cross section of the microstrip line.
- (c) Write the simple form formula of the characteristic impedance (Zo) and the guided wavelength (λ_i) of a microstrip line.

Microstrip Transmission Line

國立成功大學八十四學年度電機研究所考試(電磁波 (丁)試題)共

Waveguide Problem

A 10-GHz RF signal is coupled to a 1-m-long waveguide that has dimensions of a = 2 cm, b = 1 cm. The output end of the waveguide is loaded in 285 Ω . Determine the following: (30%)

- (a) Wavelength and frequency of the lowest-frequency RF signal that will propagate down the waveguide
- (b) The waveguide modes, if any, that will propagate in the waveguide and plot the cross-sectional E field distribution
- (c) The guide wavelength λg and waveguide impedance Zg of the mode
- (d) The VSWR of the RF signal in the waveguide (loaded in 285 Ω)
- (e) The impedance seen at the input end of the waveguide
- (f) Briefly explain the physical meaning of the waveguide modes. (Note: Do not just discuss what are the TE and TM modes. Try to explain the mode from the solution point-of-view of the wave equations in a waveguide.)
- A communication satellite is in a synchronous orbit 36,000 km above the earth. The satellite transmitter power is 10 W and the satellite antenna with a gain 30 dB and radiation efficiency 0.7 at 10 GHz radiates a circularly polarized (CP) wave. The earth station receiver with an antenna gain 40 dB and radiation efficiency 0.6 receives the satellite transmitted signal. (25%)
 - (a) Determine the time-average power density of the satellite antenna radiated wave at the location of the earth station.
 - (b) Determine the received power of the earth station antenna (assuming a matched load and no polarization mismatch).
 - (c) Let the $\boldsymbol{\theta}$ component of the far-zone E field of the satellite antenna radiated wave be $(f(\theta,\phi))$ is the antenna pattern function)

$$E_{\theta} = E_0 \left(\frac{e^{-j\beta r}}{4\pi r} \right) f(\theta, \phi)$$

Write all other components of the E and H fields (either right-hand or left-hand circular polarization).

(d) Determine the E_{θ} field intensity from (a) and (c).

Communication link power transmission formula

$$\frac{P_L}{P_{rad}} = \frac{G_t \eta_t G_r \eta_r \lambda^2}{(4\pi r)^2}$$

 $\frac{P_L}{P_{rad}} = \frac{G_t \eta_t G_r \eta_r \lambda^2}{(4\pi r)^2}$ $P_{rad} = \text{radiated power from the antenna}, P_L = \text{received power to the matched load}$ $\eta_{\ell}(\eta_r)$ = transmitting (receiving) antenna radiation efficiency

國立成功大學八十四學年度宣傳研究所考試(宽磁波 (T)試題)并3页

