國立成功大學 (85) 學年度 共 2 頁 肵 試題 碩士班招生考試 第 頁

- (6%) 1. (a) A p-n junction diode has doping density of $N_A = 1 \times 10^{17} cm^{-3}$ and $N_D = 1 \times 10^{17} cm^{-3}$ $10^{15} cm^{-3}$. Please calculate the contact potential V_O of this diode. (if $n_i = 1 \times 10^{10} cm^{-3}$) (3%)
 - (b) If a resistor R=10KΩ is connected with this diode from p-type to n-type terminal. Please calculate the conduction current of this circuit. (3%)
- (6%) 2. For a npn bipolar junction transistor, the reverse saturation currents of the emitter-base and base-collector junction are $I_{ES} = 1 \times 10^{-15} A$ and $I_{CS} = 2 \times 10^{-15} A$, respectively. If the common-emitter forward short-circuit current gain is $\beta_F = 100$. Please estimate the values of α_F , α_R , and β_R . (6%)
- (6%) 3. For a certain JFET has $I_{DSS} = 10mA$ and $V_P = -8V$.

(a) Is this a p-channel or n-channel FET? (3%)

(b) Calculate I_D at $V_{GS} = -3V$. (3%)

- (15%) 4. An inverter circuit is shown in Fig. 1. The output characteristics of Q_1 and Q_2 are shown in Fig. 2 and Fig. 3, respectively. Assume that $C_{tot} = 0.4 pF$, $V_{OH} = 5.8 V$, $V_{OL} = 0.5V$ and that the input signal has V(0) = 0.3V and V(1) = 6V. Please estimate the propagation delay t_{PHL} and t_{PLH} of this circuit.
- (25%) 5. For the active-load differential amplifier of Fig. 4 when biased with a current I=0.2mA, and if the BJTs have $\beta = 200$, $V_T = 25mV$, and $V_A = 100V$,

(a) Find the values of R_i , G_m , and r_o . (6%)

(b) Find the open-circuit voltage gain.(4%)

(c) Find the output resistance of the cascode amplifier. (5%)

(d) What is the voltage gain from the base to the collector of $Q_1(3\%)$

(e) What is the minimum value of V_{BIAS} that results in the upper limit of the input common-mode range being at least +10V?(3%)

(f) Compare to the C-E configuration, what is the advantages of the cascode amplifier to the frequency response?(4%)

(5%) 6. The transistor shown in Fig. 5 has $\beta = 100$, $r_{\pi} = 1K\Omega$ and $r_{\phi} \to \infty$.

(a) Determine the value of the lower -3dB frequency, f_L .(3%)

- (b) Given i(t) as 100Hz square wave, determine the percentage tilt in the output. What is the lowest frequency square wave that exhibits no more than 2 percent tilt?(2%)
- (10%) 7. The compensated return ratio of a wide-band single-loop amplifier is

$$T(s) = \frac{10^4}{[1 + (s/w_1)][1 + (s/10^7)][1 + (s/10^8)]}$$

- (a) Determine its dominant pole w_1 so that its phase margin is approximately $90^{\circ}.(5\%)$ (b)Draw its Bode diagram.(5%)
- (17%) 8. An instrumentation amplifier circuit is shown in Fig. 6 where $R_1 = R_2$, $R_3 = R_4$, and all transistors are identical. (a) Identify the function of each component. (12%) (b) Derive $\frac{v_o}{v_{in}} = ?(5\%)$
- (10%) 9. Explain by means of an asymptotic Bode diagram why a practical integrator deviates from an ideal one at both high and low frequencies.

图 學年度 國立成功大學 电 机 所 电子 學 試題 共 2 頁 領土班招生考試 电 机 所 电子 學 試題 第 2 頁

Fig. 2

Fig. 4

