
86 學年度 國立成功大學 電子袋 所 電子学

共 2 頁 試題 第 1 頁

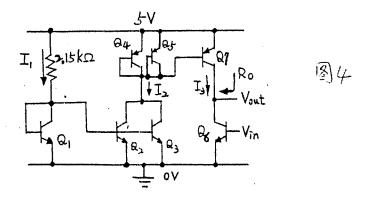
- 1. (a) A one-sided p⁺-n Si junction diode, if N_D=1x10¹⁶cm⁻³ and N_A=1x10¹⁸cm⁻³, please calculate the depletion region width of the diode with zero bias (assuming n_i=1.45x10¹⁰cm⁻³) (5%)
 - (b) In a silicon crystal, which one is larger, μ_n or μ_p ? What are the factors that might influence the electron mobility μ_n and the hole mobility μ_p , why? (4%)
 - (c) Please draw the small signal model of a bipolar junction transistor

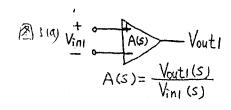
(3%), derive the transconductance $g_m = \frac{\Delta I_c}{\Delta v_{BE}} \Big|_{V_{CBQ}} = \frac{|I_{CQ}|}{\eta V_T}$ (3%)

- (d) Please state in your own words, what are the advantages of BJT and FET, respectively. (5%)
- 2. (a) 簡述射極隨偶器電壓增益小於1之原因。(3%)
 - (b) 頻率補償之主要目的爲何?(3%)
 - (c) 試簡述振盪器之工作原理。振盪條件爲何?如何決定振盪頻率?(4%)
- 3. (a) 試推導圖 1 所示電路之電壓增益 $A_v(=v_o/v_i)$ 。設兩電晶体之輸出電阻均爲 r_o 。 (5%)
 - (b) 試繪出圖 2 所示(a)、(b)兩電路之移轉特性曲線。於電路應用上何者較佳?簡述其原因。(5%)
- 4. A TTL gate circuit is shown in Fig. 3, Both of the inputs are tied together. The transistors are identical and have $\beta_R = 0.5$
 - (a) Determine $\beta_{F(min)}$ for proper operation. Assume that Q2 and Q3 saturate for v_s =V(1). (12%)
 - (b) What is the fan-out? (8%)

(背面仍有題目,請繼續作答)

86 學年度 國立成功大學 碩士班招生考試


言和 所力


試題 共 ² 頁

- 5. An amplifier circuit is shown in Fig. 4, NPN transistors are identical. PNP transistors are identical. All transistors operate in the active region. Base current can be ignored. V_{BE} =0.7V, Early voltage V_A =100V, thermal voltage V_T =kT/q=25mV. Calculate (a) I_1 =? (3%), (b) I_2 =? (3%), (c) output resistance R_o =? (3%) (d) low frequency gain v_{out}/v_{in} =? (3%)
- 6. For a two stage OPAMP, explain (a) Miller compensation. (3%) (b) slew rate. (3%)
- 7. A single-pole amplifier as shown in Fig. 5(a) is assigned to have a low-frequency gain of 100 and a pole at 10⁵Hz (i.e. 2πx10⁵ rad/sec). The single-pole amplifier (transfer function=A(S)) is used to design a feedback amplifier (transfer function=A_F(S)) as shown in Fig. 5(b).
 (a) Derive A(S) and draw its Bode plot. (3%) (b) What's the feedback type of the internal stage of the feedback amplifier? β for the internal stage =? (3%) (c) Derive A_F(S) and draw its Bode plot. (3%) (d) If the gain of the single-pole amplifier is decreased by 20%, what is the corresponding gain decrease in the feedback amplifier? (3%)
- 8. (a) For a Butterworth filter that meets the following low-pass specifications: f_p =3KHz, 20dB attenuation at f_s =6KHz, calculate N=? (5%)

(N_{th} order Butterworth transmission: $\left| \frac{H(f)}{H_o} \right|^2 = \frac{1}{1 + (f/f_p)^{2N}}$)

(b) Draw the circuit diagram of an universal biquad filter and show how lowpass can be achieved (5%)0

$$\begin{array}{c|c}
qR & qR & qR \\
\hline
QR & M & qR & M
\end{array}$$

$$\begin{array}{c}
A(s) & A(s) & A(s) & A(s) \\
\hline
V_{in2} & V_{in2} & (s) & A(s)
\end{array}$$

$$\begin{array}{c}
A_F(s) = V_{out_2}(s) & A(s) & A(s)
\end{array}$$