86 學年度 國立成功大學 碩士班招生考試

電機研究

試題 共 / 頁

- 1. Solve for the following differential equations.
 - (a) $yy''+(y+1)(y')^2=0$. (5%)
 - (b) $y''-4y = \sum_{n=1}^{\infty} \frac{1}{n} \sin(nx)$. (5%)
- 2. (a) Evaluate the integral $I = \int_{0}^{\infty} \sqrt{x}e^{-x^3} dx$. (5%)
 - (b) Given that Laplace transform $L\{t^{-1/2}\}=(\pi/s)^{1/2}$, please find the value of $L\{t^{1/2}\}$. (5%)
- 3. For the differential equation xy''-2xy'+2y=0,
 - (a) Find the general solution in power series form. (10%)
 - (b) Check for the radius of convergence of the power series from (a). (5%)
- 4. Find the Fourier Transform of the following function
 - (a) Unit step function $u(t) = \begin{cases} 1 & t \ge 0 \\ 0 & t < 0 \end{cases}$ (5%)
 - (b) Delta pulse $d(t) = \sum_{n=-\infty}^{\infty} \delta(t nT)$, where $\delta(t)$ is Dirac delta function. (5%)
 - (c) $|F(\omega)|$ is the amplitude spectrum of f(t). Determine and draw $|F(\omega)|$, where $f(t) = \frac{2\sin(at)}{t}$ (5%)
 - (d) Let g(t) = d(t)f(t) where d(t) and f(t) are defined in (b) and (c). In addition, let $0 < T < \frac{\pi}{a}$. Determine and draw the amplitude spectrum of g(t) (5%)
- 5. Solve the following Strum-Liouville problem on interval (0, R] $x^2y'' + xy' + (\lambda x^2 n^2)y = 0; y(R) = 0 \text{ where n is a nonnegative integer.}$
 - (a) Find the eigenvalues and the corresponding eigenfunctions. Express eigenfunctions in terms of $J_{\nu}(x)$ and $Y_{\nu}(x)$. (10%)
 - (b) In addition, we require that the solutions remain bounded as $x \rightarrow 0$ from the right. Determine the general solution of this problem. (5%)
- 6. Solve the following system of equations by using method of eigenvalues and eigenvectors, (10%)

$$y_1'' = -5y_1 + 2y_2;$$

 $y_2'' = 2y_1 - 2y_2,$ where $y'' = d^2y/dt^2.$

7. Expand each of the following functions in a Laurent series that converge for 0 < |z| < R and determine the precise region of convergences:

(a)
$$\frac{1}{z(1+z^2)}$$
, (5%) (b) $z\cos(\frac{1}{z})$. (5%)

8. Evaluate the following integral, where C is the ellipse $9x^2 + y^2 = 9$ (counterclockwise) (10%):

$$\oint \left(\frac{ze^{\pi z}}{z^4-16}+ze^{\pi/z}\right)dz.$$