1. Consider the vector space P_2 of polynomials of degree at most 2. Let $T: P_2 \rightarrow P_2$ be a linear transformation such that $T(1) = 3 + 2x + x^2$, T(x) = 2, $T(x^2) = 2x^2$. Let $T^i(a) = T(T^{i-1}(a))$, for $a \in P_2$ and $i \ge 2$, find $T^k(x+2)$ in terms of k. (15%)

2. Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\mathbf{v}_4 = \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}$ be vectors in \mathbb{R}^3 . Let $\mathbb{W}_1 = SP(\mathbf{v}_1, \mathbf{v}_2) = \{ r_1\mathbf{v}_1 + r_2\mathbf{v}_2 \mid r_1, r_2 \in \mathbb{R} \}$ and $\mathbb{W}_2 = SP(\mathbf{v}_3, \mathbf{v}_4)$. Find a set of generating vectors for $\mathbb{W}_1 \cap \mathbb{W}_2$. (10%)

- 3. Let A be an $n \times n$ matrix and I be the $n \times n$ identity matrix.
- (a) Prove that $AA^{\scriptscriptstyle\mathsf{T}}$ and $A^{\scriptscriptstyle\mathsf{T}}A$ have the same eigenvalues. (5%)
- (b) If λ is an eigenvalue of Λ with a corresponding eigenvector ν . Find the eigenvalue and corresponding eigenvector of Λ +rI for a scalar r in terms of λ and ν . (10%)
- 4. A current having a Rayleigh probability density function

$$f_{I(i)} = \begin{cases} (i/a^2) \exp(-i^2/2a^2), & i > 0 \\ 0, & \text{otherwise.} \end{cases}$$

is passed through a resistor having a resistance of 2π ohms. If the mean value of the current is $E(I)=a(\pi/2)^{1/2}=2$ amperes, and the mean squared current is $E(I^2)=2a^2$, what is the mean value of the power dissipated in the resistor? (15%)

- 5. The random process X(t) has the autocorrelation function $R_X(t)=15 e^{-2|t|}$. The random process Y(t) is Y(t)=X(t)-3.
- (a) What is the mean of Y(t)? (5%)
- (b) What is the autocorrelation function for Y(t)? (5%)
- (c) What is the variance of Y(t)? (5%)
- (d) What is the crosscorrelation $R_{xy}(t)$? (5%)
- 6. A certain function of time, f(t), has a Fourier transform as shown.
- (a) Sketch the Fourier transform of f(3t). (3%)
- (b) Sketch the Fourier transform of $(f(t))^2$. (3%)
- (c) Sketch the Fourier transform of $(f(t)\cos(15t))$. (4%)

7. It is known that v(t)=A.rect(t/T) and $V(\omega)=AT.sinc(\omega T)$ are Fourier Transform pairs, as illustrated.

- (a) By modulation property $v(t)\cos(\omega_o t) <-> (1/2)(V(\omega-\omega_o) + V(\omega+\omega_o))$, sketch the Fourier spectrum of $v(t)\cos(\omega_o t)$. (5%)
- (b) Sketch the waveform $v(t)\cos(\omega_o t)*v(t)\cos(\omega_o t)$; that is, the convolution of $v(t)\cos(\omega_o t)$ with itself. (10%)