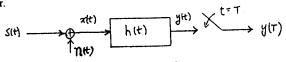
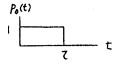

86 學年度國立成功大學 百钱(1)所 孟信条统 試題 第 1 頁


- (20%) 1. A white Gaussion signal with two-sided PSD = 10^{-6} W / Hz is passed through an ideal bandpass filter with a bandwidth of 100KHz centered at 100 MHz.
 - (a) What is the power of the output signal x(t) from this BPF? (5%)
 - (b) We may represent x(t) by $x(t) = x_o(t) \cos(2\pi f_o t + \theta) x_s(t) \sin(2\pi f_o t + \theta), \text{ where } f_o = 100 \text{MHz}.$ What are the powers of $x_o(t)$ and $x_s(t)$? (5%)
 - (c) What is the autocorrelation function of $x_a(t)$? (5%)
 - (d) What is the joint probability density function of $x_s(t)$ at t = 10 sec and t = 11 sec? (5%)
- (10%) 2. The frequency range of commercial AM broadcast is 540-1600 KHz. The local oscillator frequency f_{LO} of a superheterodyne AM receiver is chosen such that $f_{LO} > f_{RF}$ (the radio frequency). It is required that image frequency be outside of the broadcast frequency region. Determine the minimum required f_{IF} (the intermediate frequency) and the range of the corresponding f_{LO} .
- (20%) 3. The normalized message signal $m_n(t)$ has a bandwidth of 5KHz and power of 0.2W. The output power of the transmitter is 20 KW. The channel has a bandwidth of 200 KHz and attenuation of 93dB. The noise is white with two-sided PSD = 10^{-14} W / Hz.
 - (a) IF the transmitter is an AM modulator with modulation index of 0.5, what is the highest possible $\left(\frac{3}{N}\right)_{o}$? (7%)
 - (b) IF the transmitter is an SSB modulator, what is the highest possible $\left(\frac{S}{N}\right)_0$? (5%)
 - (c) IF the transmitter is an FM modulator, what is the highest possible $(\frac{S}{N})_0$? (8%)

 (Hint: Assuame $(SNR)_{PM} = 3D^1 \overline{m_0^1} \frac{P_1}{N_0 W}$, where W is the bandwidth of the message


signal and D is the deviation ratio).

(16%) 4. A signal s(t) corrupted by an additive white noise n(t) is to be detected by the following

Assume $s(t) = p_0(t)$, where $p_n(t) = rect(\frac{t-\frac{1}{2}\tau - nD}{\tau})$.

86 學年度 國立成功大學 定 核(1) 所 孟信系统 試題 共二頁 第 2 頁

The noise power spectral density $G_n(f)$ is equal to $\frac{K_0}{2}$, and h(t) is a causal filter.

- (a) What is the maximum signal-to-noise ratio (SNR) that can be obtained by the receiver. Assume T is large enough. (2%)
- (b) What is the minimum T, denoted by $T_{n,n}$, required in (a). (2%)
- (c) What is the optimal filter $h_{opt}(t)$ that produces the maximum SNR at $T_{opt}(2\%)$
- (d) Plot the output response s_0 (t)= $s(t)*h_{opt}(t)$. (2%)
- (e) if $T = \frac{r}{2}$, what is the maximum SNR that can be obtained by using a causal filter. (2%)
- (f) What is the corresponding optimal filter in (e). (2%)
- (g) Repeat (d) for s(t) = $p_0(t) + p_1(t) + p_2(t)$, (2%)
- (h) Under what condition there is no intersymbol interference in (g). (2%)
- (20%) 5. (a) Give the signal constellation of the 16-QAM (or QASK). Show the block diagram of a correlation detector for 16-QAM. (4%)
 - (b) If the encoded DPSK sequence received is 1100101011, what is the corresponding messages recovered? In your answer, you have to explain how you obtain your answer. (4%)
 - (c) A digital transmission system is designed to transmit data at R_b bits per second. What is the minimum bandwidth required? How you do it? (4%)
 - (d) Plot the power spectral density of M-ary PSK for M=2,4,8. Estimate the modulation speed for each. (4%)
 - (e) List the advantages and disadvantages of the signaling scheme with correlative coding over the signaling scheme without. Give the rationale for each item you list. (4%)

(14%) 6. A correlator receiver used to determine $s_1(t)$ or $s_2(t)$ was sent is shown below.

$$S_{i}(t) \longrightarrow \begin{cases} \chi(t) & \chi_{i} \\ \downarrow_{i} \\ \downarrow_{i} \end{cases} \xrightarrow{\gamma_{i}} \begin{cases} \chi_{i} \\ \chi_{i} \end{cases} \xrightarrow{\gamma_{i}} \end{cases} \xrightarrow{\gamma_{i}} \begin{cases} \chi_{i} \\ \chi_{i} \end{cases} \xrightarrow{\gamma_{i}} \end{cases} \xrightarrow{\gamma_{i}} \begin{cases} \chi_{i} \\ \chi_{i} \end{cases} \xrightarrow{\gamma_{i}} \begin{cases} \chi_{i} \\ \chi_{i} \end{cases} \xrightarrow{\gamma_{i}} \end{cases} \xrightarrow{\gamma_{i}} \chi_{i} \end{cases} \xrightarrow{\gamma_{i}} \xrightarrow{\gamma_{i}} \begin{cases} \chi_{i} \\ \chi_{i} \end{cases} \xrightarrow{\gamma_{i}} \end{cases} \xrightarrow{\gamma_{i}} \chi_{i} \end{cases} \xrightarrow{\gamma_{i}} \xrightarrow{\gamma_{i}} \chi_{i} \end{cases} \xrightarrow{\gamma_{i}} \xrightarrow{\gamma_{i}$$

w(t) is the white Gaussian noise with power spectral density $\frac{N_0}{2}$. The energies of $s_1(t)$ and $s_2(t)$ are the same and equal to E. $\phi_1(t)$ and $\phi_2(t)$ form an orthonormal basis in $0 \le t \le T$ and

$$\begin{split} & s_{1}\left(t\right) = s_{11}\phi_{1}\left(t\right) + s_{12}\phi_{2}\left(t\right), \ 0 \leq t \leq T \\ & s_{2}\left(t\right) = s_{21}\phi_{1}\left(t\right) + s_{22}\phi_{2}\left(t\right), \ 0 \leq t \leq T \\ & < s_{i}\left(t\right), \phi_{j}\left(t\right) > = \int_{0}^{T} s_{i}\left(t\right)\phi_{j}\left(t\right)dt \\ & = \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}, \ \ddot{s}_{1} = \begin{bmatrix} s_{11} \\ s_{12} \end{bmatrix}, \ \ddot{s}_{2} = \begin{bmatrix} s_{21} \\ s_{22} \end{bmatrix} \end{split}$$

- (a) Calculate the variance of random variable x_1 given that $s_1(t)$ is sent. (5%)
- (b) Show that the minimum error probability of the system, p_{e_1} is given by (5%)

$$p_e = \frac{1}{2} erfc \{ \alpha (SNR (1 - \rho_{12}))^{\beta} \}$$

Where α and β are two constants, $SNR = \frac{E}{N_0}$, ρ_{12} is the correlation coefficient

between
$$s_1(t)$$
 and $s_2(t)$ given by $\rho_{12} = \frac{1}{E} \int_0^T s_1(t) s_2(t) dt$
and erfc(u) is given by $\operatorname{erfc}(u) = \frac{2}{J_0} \int_u^\infty e^{-z^2} dz$

(c) Find α , β and ρ_{12} for BPSK. (4%)