- 1. (a) Solve $(x^2 + 4)y' = 2x 8xy$ subject to y(0) = 1. (5%)
 - (b) Solve the differential equation $y''+4y = \cos^2 x$. (5%)
 - (c) Find a power series representation of coshx. (5%)
- 2. An exact differential equation A(x)y''+B(x)y'+C(x)y=0 can be expressed in the form [A(x)y']+[F(x)y]'=0 for some F(x).
 - (a) Show that if the equation is exact, then A''(x) B'(x) + C(x) = 0. (5%)
 - (b) Solve for the general solution of the equation. (5%)
- 3. Use the Laplace transform to solve the problem. (10%) y''+2ty'-4y=1; y(0)=y'(0)=0
- 4. Evaluate

(a)
$$\int_0^{2\pi} \frac{d\theta}{(a+b\cos\theta)^2}$$
 $(a>b>0)$. (10%)

(b)
$$\int_0^\infty \frac{\ln x}{\sqrt{x(a^2+x^2)}} dx$$
. (10%)

5. (a) -Use Rodrigues' formula $P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$ to find the expansion of the function

$$f(x) = \begin{cases} 1 & \text{if } 0 \le x \\ 0 & \text{if } x < 0 \end{cases}$$

in terms of Legendre polynomials. (10%)

- (b) Expand the above function, f(x), in a Fourier series in the interval [-1, 1]. (5%)I
- 6. Let $A = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ 1 & 5 & 8 \end{bmatrix}$. Please find the bases for N(A) (the null space of A), R(A) (the

range space of A), $N(A^T)$, $R(A^T)$, $N(A^T)^{\perp}$ (the orthogonal complement of $N(A^T)$), and $R(A^T)^{\perp}$. Please also indicate which spaces are equal. (15%)

7. Please show that an $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors. (15%)