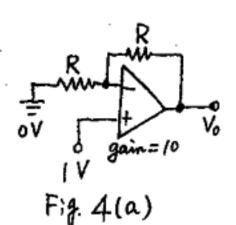
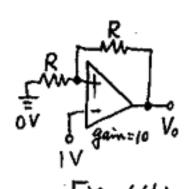
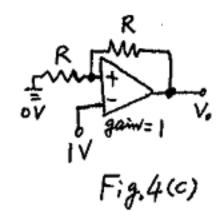
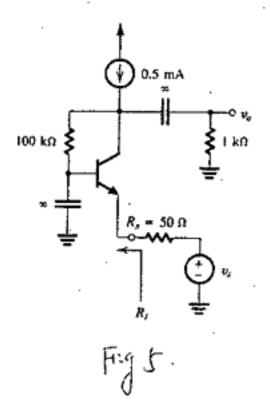

- (a) A TTL NAND gate with a totem-pole output is shown in Fig./A. Please estimate the (a) average static power dissipation P_(av), and (b) dynamic power dissipation P_(dyn) of this gate. (/f%)
 - (b) A domino logic circuit is shown in Fig./B. What is the function realized at the output Y?


 (5%)




 (A) 簡述(a)振盪器之振盪如何啓動?振盪器之優劣如何判斷?(4%),(b)動態 負電阻振盪器之操作原理(3%)?(c) Op-Amp 虚短路成立之條件(3%)。
 (B) 求圖 之 所示放大電路之頻率增益乘積(GBP)值與截止頻率。設 R_i = 0.25 kΩ, R_i = r_x = 1 kΩ, C_x = 100 pF, C_y = 1 pF, β = 100。(10%)

- 一簡述(a)頻率補償之意義及目的。(b)試利用波德圖說明如何判斷網路系統之穩定與不穩定。(10%)
- (a) Calculate V₋ and V_o of the circuit shown in Fig. 4(a) where the OPAMP gain = 10. (8%)
 (b) Calculate V₊ and V_o of the circuit shown in Fig. 4(b) where the OPAMP gain = 10. (9%)
 (c) Calculate V₊ and V_o of the circuit shown in Fig. 4(c) where the OPAMP gain = 10. (8%)
 (V₋, V₊, and V_o are the inverting input voltage, noninverting input voltage, and output voltage of the OPAMP, respectively)



電る

- 5. For the circuit shown in Fig. 5, find the input resistance Ri and the voltage gain v_{σ}/v_{σ} . Assume that the source provides a small signal v_{σ} and that β is high. Note that a transistor remains in the active region even if the collector voltage falls below that of the base by 0.4V or so. (10%)
- 6. For the common-base circuit shown in Fig. 6, assuming the bias current to be about 1 mA, $\beta=100$, $C_p=0.8 \text{pF}$, and $f_7=600 \text{MHz}$. Please (a) estimate the midband gain V_o/V_s .
- (b) use the short circuit time constants method to estimate the lower 3dB frequency f_L .
- (c) Find the high frequency poles, and estimate the upper 3dB frequency f_{H} (15%)

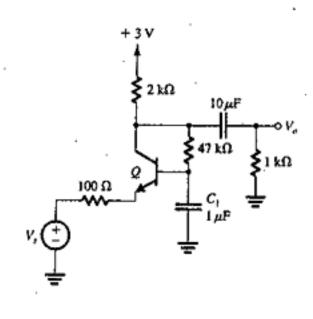


Fig 6