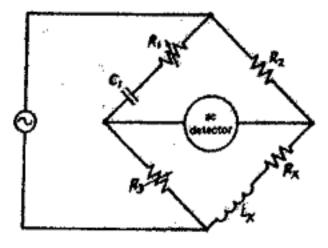

- (15%) Explain the operation of a dual-slope-integrator analog-to-digital converter (ADC)?
 What are the quantizing error and the resolution of a 16-bit ADC?
- (20%) Briefly explain the following terms: (1) Flash memory, (2) Cache RAM, (3) RS232C,
 (4) IEEE488/GPIB, (5) Handshaking.
- (10%) Using a 4.5 V battery together with a meter that has 100 μA FSD and a coil resistance of 100 Ω, design a series ohmmeter to have a range of 1 kΩ (0.9FSD) to 100 kΩ (0.1FSD).



Zero Ra in Control

System waveforms of the dual-slope-integrator ADC (problem 1)

Series ohmmeter (problem 3)

- 4. (15%) Find the series-equivalent inductance and resistance of the network (coil) that causes a bridge (as shown below) to null with the following component values: ω=3000 rad/s, R₂=10 kΩ, R₁=2 kΩ, R₃=1 kΩ, C₁=1 μF. Also, determine the Q factor of the coil
- (15%) Determine the dimensions of magnetic flux (φ), inductance (L), resistance (R), and capacitance (C). Using the results to show that the product of R and C has a time unit.
- (10%) Sketch half-wave rectifier ac electronic voltmeters using (a) a voltage follower and (b)
 a precision rectifier. Explain the operation of each circuit, and compare their performance.
- 7. (15%) A 10:1 oscilloscope probe, as shown below, is used with an oscilloscope with R_i = 1 MΩ and C_i = 40 pF. If the probe uses a 9 MΩ series resistor and the coaxial cable has a capacitance of 80 pF, determine the value of capacitor C₁ that should be connected in parallel with the 9 MΩ resistor. Also calculate the signal frequency at which this probe will produce a 3 dB reduction in signal from a 1 kΩ source.

A bridge (problem 4)

Circuit of 10:1 probe (problem 7)