*
$$\varepsilon_0 = 10^{-9}/(36\pi)$$
 (F/m);

$$\mu_0 = 4\pi \times 10^{-7} (H/m);$$

1. Maxwell's Equations (30%)

- (a) Write down the Maxwell's equations in differential form.
- (b) Which term in Maxwell's equations is the displacement current density? What is the difference between the displacement current and the free current?
- (c) Write down the equation of continuity.
- (d) Write down the scalar Poisson's equation for the scalar electric potential Φ and the expression of E-field in term of Φ .
- (e) Write down the vector Poisson's equation for the vector magnetic potential \bar{A} and the expression of B-field in tern of \bar{A} .
- The far-zone potential of the electric dipole is (10%)

$$V(\vec{r}) \approx \frac{Qd\cos\theta}{4\pi\epsilon_0 r^2}$$
 $r >> d$ (far zone)

- (a) Determine the far-zone E-field.
- (b) Prove the above far-zone potential satisfies Laplace's equation.

del operator
$$\nabla = \left(\hat{a}_r \frac{\partial}{\partial r} + \hat{a}_\theta \frac{1}{r} \frac{\partial}{\partial \theta} + \hat{a}_\phi \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi}\right)$$

Laplacian operator $\nabla^2 V = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial V}{\partial r}\right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial V}{\partial \theta}\right) + \frac{1}{r^2 \sin \theta} \left(\frac{\partial^2 V}{\partial \phi^2}\right)$

(spherical coordinate)

- 3. A parallel-plate capacitor with a uniform lossy dielectric has a resistance of 1 [K Ω]. The plate surface area is S=1 cm² and spaced by d=0.1 cm. If the dielectric constant is $\epsilon_r=10$, find the conductivity σ of the dielectric. (Note: $RC=\epsilon/\sigma$) (5%)
- 4. If $\mu_r = 500$ and the density of atoms is 9.02×10^{22} [cm⁻³] for cobalt, calculate the average magnetization dipole moment per atom when a sample of cobalt is placed in a uniform B-field $B_m = 0.1$ [T]. (5%)

Magnetization $\vec{M} = \chi_m \ddot{H}$ for linear, isotropic magnetic materials $\chi_m = \underset{magnetic \ susceptibility}{\text{magnetic susceptibility}}$ $\vec{B} = \mu_0 (\vec{H} + \vec{M}) = \mu_0 (\mathbf{I} + \chi_m) \vec{H} = \mu_c \mu_r \vec{H} = \mu \vec{H}$... equation relating B and H

(25%) 5. 簡答題

- (1) phonon scattering
- (2) punch through
- (3) two-dimensional electron gas
- (4) molecular beam epitaxy
- (5) metal organic chemical vapor deposition
- (15%) 6. 就 n-p-n bipolar transistor 而言, 試列舉三種可有效提高 其電流增益(current gain)的方法,並說明之.

(10%) 7. 如下圖所示之一度空間無限深量子井(quantum well)

- (1) 試推導並畫出在幷內的能階分佈及波函數(wave function).
- (2) 井寬(Lz)縮小與放大時,能階分佈有何變化?其物理意義爲 何?

