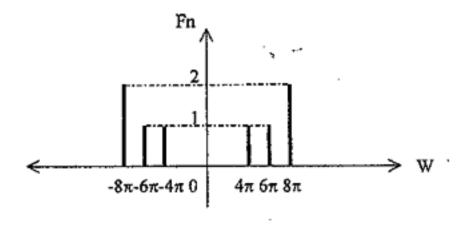
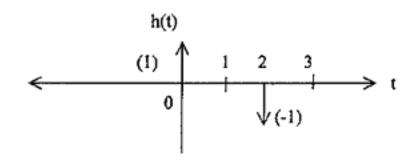

88 學年度 國立成功大學 电线 系面信息搜 試題 共二頁

1. X is a Gaussian random variable with a mean of 300 and a standard deviation of 50. Two events are defined as follows:

A = (200 < X < 325), and B = (280 < X < 400). Use this information to calculate P(A|B), and compare that with P(A). (10%)

- 2. Messages arrive at a computer at an average rate of 15 messages per second. The number of messages that arrive in 1 second is known to be a Poisson random variable.
- a). Find the probability that no messages arrive in 1 second. (7%)
- b). Find the probability that more than 10 messages arrive in a 1-second period. (8%)
- 3. A random variable X is Gaussian with zero mean and a variance of 1.0. Another random variable Y is obtained from $Y = X^3$.
- (a). Write the probability density function for the random variable Y; (5%)
- (b). Find the mean and the variance of the random variable Y; (5%)
- (c). If random variable Y is now obtained from Y = -2X + 3, find the mean of Y, its variance, and its pdf. (5%)
- 4. A communication system transmits binary information over a channel that introduces random bit error with probability p=10⁻³. The transmitter transmits each information bit three times:


and a decoder takes a majority vote of the received bits to decide on what the transmitted bit was. Find the probability that the receiver will make an incorrect decision. (10%)


- Let A be an n×n matrix, det(A) denote the determinant of A and adj(A) denote the adjoint of A.
- (a) Prove that A is invertible if and only if adj(A) is invertible. (7%)
- (b) Prove that $det(adj(A))=(det(A))^{n-1}$. (8%)

6. Let A=
$$\begin{bmatrix} 1 & 2 & 1 & 1 \\ 0 & 1 - 1 & 2 \\ 2 & 5 & 1 & 4 \\ 1 & 1 & 2 - 1 \end{bmatrix}$$

- (a) Find a basis for the column space of A. (5%)
- (b) Find an orthogonal basis for the null space of A. (10%)
- 7. The line spectrum, in volts, of a certain periodic function f(t) is shown below.

- (a) What is the value of the period, T? (2%)
- (b) What is the average power of f(t) when f(t) is applied to a 1-0hm resistance. (3%)
- (c) Let $g(e)=f\left(\frac{t}{2}\right)$, Sketch the line spectrum of g(t). (3%)
- 8. Find the convolution integral for f(t) and h(t), where $f(t)=A \sin \pi t u(t)$ and h(t) is shown below. (12%)

