89 學年度 國立成功大學 電機 系 電子學 試題 共 Z 頁 碩士班招生考試 (Z.J. Z. 庚, 辛組) 所 電子學 試題 第 1 頁

- Using the ideal op amp to implement two different non-inverting integrators without inverter. Explain your results in brief. (10%)
- 2. The op amp in the circuit of Fig. 1 has an open-loop gain of 10^5 and a single-pole rolloff with $\omega_{3dB} = 10$ rad/s.
 - (a) Sketch a Bode plot for the loop gain. (2%)
 - (b) Find the frequency at which $|A\beta| = 1$, and find the corresponding phase margin. (4%)
 - (c) Find the closed-loop transfer function, including its zero and poles. (4%)
- 3. Why is Miller-effect compensation often employed to compensate an op amp? (10%)
- Draw the circuit diagram of a 2-bit charge-redistribution A/D converter and explain its operational principle. (10%)
- 5. For the circuit shown in Fig. 2:
 - (a) Calculate the emitter resistance of the T model (r_e) , and base resistance of the hybrid- π model (r_π) of transistor Q₁. Use $\beta = 100$, $V_{BE(co)} = 0.7V$. (10%)
 - (b) Calculate the input resistance (R_i) and the voltage gain (v_ν/v_s) . (10%)

89 學年度 國立成功大學 電 機 碩士班招生考試 (己,丁己,庚,幸組) 電子學 試題 頁

- 6. For the circuit shown in Fig. 3, express I_o as a function of V_o . Assume that all transistors are identical with $V_{BE(on)} = 0.7V$ and $V_A = 120V$. (10%)
- 7. Calculate the bias current Ibias of the circuit shown in Fig. 4. Assume that threshold voltage of device M1 and M2 is identical, $\mu_n C_{ox} = 20 \mu A/V^2$. (10%)
- 8. (a) Determine the logic function at the output Y of the circuit shown in Fig. 5A. (10%)
 - (b) What is the logic function realized at Y in the NMOS circuit shown in Fig. 5B? (10%)

Identical 25 = (<u>#</u>)₁ (W)2=100 M_1 { R=1 KΩ -5 V Fig. 4

+5 V

Fig. 5B