90 學年度 國立成功大學 党机 系 乙程权学 試題 共 / 頁 研士班招生考試 党 机 所 乙程权学 武題 共 / 頁

- 1. Let **D** be the differentiation operator on P_3 (where P_n denotes the set of all polynomials of degree less than n) and let $A = \{p \in P_3 \mid p(0) = 0\}$. Please show that **D** maps P_3 onto P_2 , but is not one-to-one. (10%)
- 2. Please show that the eigenvectors of a Hermitian matrix belonging to distinct eigenvalues are orthogonal. (10%)

3. Let
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 8 & 1 \\ 0 & 0 & 0 & 8 \end{bmatrix}$$
, please find $\mathbf{A}^{\frac{1}{3}}$. (10%)

- 4. Find the general solutions of the given differential equations.
 - (a) $y''+5y'=xe^{-x}\sin(3x)$. (10%)
 - (b) $(2x^2 + 3x + 1)y'' + 2xy' 2y = 0$; $y_1(x) = x$ is a solution for x in any interval not containing -1 or -1/2. (10%)
- 5. Use the Laplace transform to solve the system. (15%) $x'+2x-y'=0, x'+y+x=t^2; x(0)=y(0)=0.$
- 6. (a) Find the Fourier integral representation of the function

$$f(t) = \begin{cases} 0 & -\infty < t \le -1 \\ 1+t & -1 \le t \le 0 \\ 1-t & 0 \le t \le 1 \\ 0 & 1 \le t < \infty \end{cases}$$

and express the integral which approximates this function for frequencies between 0 and ω_0 in terms of the sine-integral function. (15%)

(b) Use the result of (a), show that

$$\frac{\pi}{2} = \int_0^\infty \frac{1 - \cos \omega}{\omega^2} d\omega \,. \quad (5\%)$$

7. Evaluate $\oint (\bar{z} - a)^{-1} (b - \bar{z})^{-1} (z^2 + z^{-2}) dz$, 0 < |a| < r < |b|, where c is the positive orientation of the circle $\{z; |z| = r\}$. (15%)