
1. (20%) The half-wave rectifier electronic voltmeter in the figure shown below uses a 0.5 mA deflection meter with a 460 Ω coil resistance. (a) If $R_s = 450 \Omega$, calculate the rms input voltage (i.e. Eb) required to give half-scale deflection. (b) Explain the effects of C2, C3, and C4. How if we place D1 after node A?

- 2. (15%) Using a 4.5 V battery together with a PMMC meter that has 100 $\,^{\mu}$ A FSD and a coil resistance of 100 $\,^{\Omega}$, design a series ohmmeter to have a range of 1 k $^{\Omega}$ to 100 k $^{\Omega}$.
- 3. (15%) Briefly explain the following terms: (1) Instrumentation Amplifier (2) Lock-in Amplifier (3) Chopper Amplifier (4) Isolation Amplifier (5) Linear Variable Differential Transformer (LVDT).
- 4. (15%) The parameters in a Wheatstone Bridge are: $P=4K\Omega$, $Q=1K\Omega$, $S=2K\Omega$, E=10V, minimum adjustable $\triangle S=\pm 0.2\Omega$, $R_m=1K\Omega$, and $I_G(min)=0.5\mu$ A. Find the value of R when balance (5%) and the resolution of the Wheatstone bridge (10%).
- 5. (15%) To measure the inductance of an inductor, there are two bridges: Maxwell and Hay bridges. Describe these two bridges (10%) and find their differences (5%).
- 6. (10%) A low-capacitance probe contains a parallel RC circuit. Explain why it can expand the measurable frequency range. Assume a measured source E with R_s (source resistance)= $600^{\circ}\Omega$, R=9M $^{\circ}\Omega$ and C=13pF for the low-capacitance probe, R_{in} (input resistance of an oscilloscope)=1 M $^{\circ}\Omega$, C_t (total capacitance shunt with R_{in})=120 pF.
- 7. (10%) In IEEE-488 interface, describe the role of controller, listener, and talker.

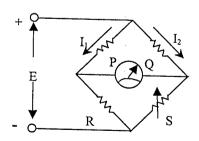


Figure for Problem 4