90 學年度 國立成功大學 電機工程(Z組) 控制工程 試題 共一頁 第一頁

- 1. A dynamic vibration absorber is shown in Fig. 1.
- (a) Obtain the differential equations describing the system in which F(t) is the input and $y_1(t)$ is the output.

(8%)

(b) Determine the values of M_2 and k_{12} such that the main mass M_1 does not vibrate when $F(t) = A \sin \omega_0 t$.

(7%)

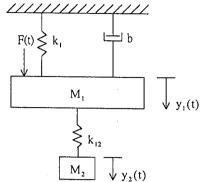
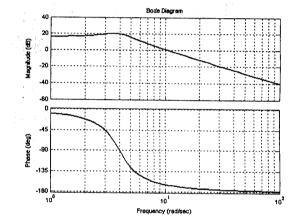



Fig. 1

2. Consider the feedback system in Fig. 2. Fig. 3 depicts the Bode diagram of G(s). Determine an approximate second-order model of G(s). (10%)

G(s)

K(s)

Fig. 2

Fig. 3

- 3. With respect to Problem 2. Design a feedback controller K(s) such that the closed-loop system is stable and has at least 40° phase margin and 10 dB gain margin. (10%)
- 4. Prove that if A is a stability matrix, then the Lyapunov equation $A^TP + PA + Q = 0$ has a unique solution for every Q. (Note: A^T is the transpose of A). (15%)
- 5. For a discrete-time system with T = 0.01 sec, the characteristic equation is given by $(z 0.99)(z^2 0.5z + 1.0) = 0$.

(a) Show that this system is marginally stable.

(8%)

(b) Find the frequency at which the system will oscillate.

(7%)

6. (a) Name five representations of systems in state space.

(5%)

(b) Why are marginally stable systems considered unstable under the BIBO definition of stability?

(5%)

(c) Define system type.

(5%)

- (d) Describe the conditions that must exist for all closed-loop poles and zeros in order to make a 2nd-order approximation. (5%)
 - (5%)
- (e) Why is there more improvement in steady-state error if a PI controller is used instead of a lag network?

(----

- (f) Describe the change in the open-loop frequency response magnitude plot if time delay is added to the plant.
- (5%)
- (g) Briefly explain how a lag network allows the low-frequency gain to be increased to improve steady-state error without having the system become unstable. (5%)