

- 1. Please write down the addressing modes of the MIPS instruction sets with brief explanation. (20%)
- 2. Suppose that 20% of the instructions are loads, and half of the time the instruction following a load instruction depends on the result of the load. If this hazard creates a single-cycle delay, how much faster is an ideal pipelined machine (with CPI of 2) that does not delay the pipeline, compared to this realistic pipeline that may create a single-cycle load stall delay? (Ignore any stalls other than load stalls) (20%)
- 3. Look at this code sequence

SW 512(R0), R3; $M[512] \leftarrow R3$ (cache index 0) LW R1, 1024(R0); $R1 \leftarrow M[1024]$ (cache index 0) LW R2, 512(R0); $R2 \leftarrow M[512]$ (cache index 0)

Assume a direct-mapped cache that maps 512 and 1024 to the same block, and a four-word write buffer. Will R3 always equal to R2? (10%)

- 4. Explain the following terms (20%)
 - a. Microinstruction.
 - b. Handshaking protocol.
- 5. In a multicycle implementation, (20%)
 - a. Please specify each of the instruction execution steps of a load instruction (format: lw Ri, offset (Rj)).
 - b. Assume that each step takes one CPU cycle to complete. Use a state diagram of five states to explain how a processor may handle an I/O interrupt that occurs during the execution of a load instruction?
- 6. The following figure shows the miss rate versus block size. Explain why these curves look like a smile curve, that is, higher miss rate at the two ends while lower miss rate in the middle. (10%)

