⑨] 學年度 國立成功大學 價 机 系 ア 子 野 試題 共 2 頁 碩士班招生考試 田 2 丁 2 更 所 常 子 野 試題 第 / 頁

- 1. For the circuit shown in Fig.1, for the BJT, β =200 and $|V_A|$ =100V, and for the MOSFET, $|V_A|$ =30 V, $|V_t|$ =1 V, $|V_t|$ =1 V, $|V_t|$ =1 V, $|V_t|$ =200 $|V_t|$ =200 $|V_t|$ =200 $|V_t|$ =200 $|V_t|$ =200 and $|V_t|$ =300 and $|V_t|$ =30
- (a) the bias current in Q1 (3%);
- (b) the voltage at the node between the two transistors (assume $|V_{BE}| = 0.7V$) (3%);
- (c) g_m and r_o for each device (4%);
- (d) the maximum allowed value of v_0 (3%):
- (e) the voltage gain(3%);
- (f) the input resistance(3%);
- (g) the output resistance (3%);
- (h) Does the current source 2I have to be a sophisticated one? For this generator, what output resistance would reduce the overall gain by 1%?(3%)
- 2. Consider an OPAMP with V_{DD} =5V, GND=0V and V_{ss} = -5V as shown in Fig.2.
 - (a) If $R_1=R_2=1\,k\Omega$ and $V_{in}=0V$, please find that $V=?V_o=?$ when the OPAMP is with 10 mV input offset and gain $A=\infty$. (10%)(V. is the inverting input node of the OPAMP)
 - (b) If $R_1=R_2=1\,k\Omega$ and $V_{in}==2V$, please find that $V==?V_0=?$ when the OPAMP is with 10 mV input offset and gain $A=\infty$. (5%)
 - (c) If R_1 =1k Ω and R_2 =1000k Ω , please find that A_F = V_o/V_{in} =? when the OPAMP is with no offset and gain A=100.(10%)
- 3. A TTL NAND gate with a totem-pole output is shown in Fig.3. Assume that the inputs are derived from the outputs of identical gates and β_F =100 and β_R =0.5.
 - (a) Given A=B=C=V(1), determine the operation modes of transistors Q_1 and Q_4 . (4%)
 - (b) Repeat (a) for the situation where at least one input logic level is V(0). (4%)
 - (c) Determine the logic levels. (8%)
 - (d) Please estimate the average static power dissipation (P_{av}) and dynamic power dissipation (P_{dyn}) per gate. (9%)
- 4. (a) Draw the load line of D1 and find V1 for the circuit shown in Fig. 4. Assume that D1, D2 and D3 have the same I-V characteristics, and VA = 3Vr, where Vr is the cut-in voltage of the diode. (10%)
 (b) Derive and plot the small-signal equivalent circuit for a BJT with I-V characteristics expressed as

 $i_C = av_{BE}^2(1 + bv_{CE})$, where a and b are constant. (5%)

(c) Determine ID and VO for the circuit shown in Fig. 5 for VDD = 5 V and VI = 2 V. Assume that $k_{n1} = 5k_{n2} = 50~\mu\text{A/V}^2$ and $V_{th1} = V_{th2} = 1~\text{V}$, where $k_n (= 0.5 \mu_n C_{ox} (\text{W/L}))$ is the conduction parameter and V_{th} is the threshold voltage. Note that T2 is an enhancement-mode MOSFET. (10%)

(背面仍有題目,請繼續作答)

7-11-10

⑨D 學年度 國立成功大學 南 机 系 電子學 試題 共 2 頁 碩士班招生考試 甲乙丁己東 所 電子學 試題 第 2 頁

Fig. 3

