9D 學年度 國立成功大學 電機 系丁组通信系統試題 共一頁 所了组通信系統 第 1 頁

1. Consider the system shown in the diagram below. The noise n(t) is white with two-sided power spectral density (PSD) N₀/2. The PSD of the input signal x(t) is $S_x(f) = A/[1+(f/f_3)^2]$, $-\infty < f < \infty$. The parameter f_3 is the 3-dB frequency of the signal. The bandwidth of the ideal lowpass filter is W. Determine the signal-to-noise ratio of output signal y(t) as a function of W/f_3 . [Note: $\int_{0}^{W/f_3} [1/(1+z^2)]dz = \tan^{-1}(W/f_3)$] (15%)

- 2. A narrow-band frequency-modulated signal has a carrier frequency of 100 kHz, modulation index 0.10, and bandwidth 5.0 kHz. A wideband FM signal with a modulation index of 10 and carrier frequency 100 MHz is to be generated from the narrow-band signal.
 - (a) Draw the block schematic of a system utilizing a frequency multiplier, a down converter, and a bandpass filter. Give the required value of frequency multiplication. (10%)
 - (b) With modulating signal frequency $f_{\rm m} = 2$ kHz, determine the frequency deviations and modulation indices at the output points of the down converter and the bandpass filter. (7%)
- 3. Stereophonic FM broadcasting is accomplished by using DSB modulation for multiplexing and FM modulation for transmission. Let L(t) and R(t) be the left and the right channel signals, respectively.
 - (a) An FM system utilizes a deviation ratio of 5.0. Assuming that the bandwidth of the message signal is 15 kHz, compare the required transmission bandwidth of a stereophonic FM signal to a nonstereophonic FM signal. (8%)
 - (b) By comparing the noise power in the L(t)-R(t) channel to the noise power in the L(t)+R(t) channel, explain why stereophonic broadcasting is more sensitive to noise than nonstereophonic broadcasting. (10%)
- 4. Draw the modulated waveforms of the binary sequence 1 1 1 0 1 0 0 0 1 0 1 0 1 1 by using the baseband formats of (a) AMI (Bipolar); (b) Manchester (Bi-phase); (c) 8-level NRZ with Gray code; (d) Duobinary without precoder; (e) Duobinary with precoder. (Note: A preamble of 0 is assumed if necessary.) (15%)
- 5. Consider the transmission of a message via OQPSK (Offset QPSK) signals over a bandpass AWGN channel with bandwidth = 125 kHz and two-sided PSD = 10⁻⁹W/Hz.
 - (a) What is the maximum data rate if null-to-null bandwidth is considered? (5%)
 - (b) What is the maximum data rate that can be transmitted without ISI? (5%)
 - (c) Determine the maximum data rate if raised cosine spectrum with roll-off factor $\alpha=25\%$ is used to assure ISI-free. Also determine the minimum received power (in dBm) if $P_b \leq 10^{-6}$ is required. (Note: It is required $E_b/N_0=13.5$ dB for BFSK signal with coherent detection and $P_b=10^{-6}$). (10%)
- 6. The mapping between messages and codewords of an (n, k) block code is given as

Messages	Codewords	Messages	Codewords *
0 0 0	0000000	100	1110100
0 0 1	1101001	101	0011101
010	1011010	110	0101110
011	0110011	111	1000111

- (a) Determine the values of n and k. (2%)
- (b) Show the generator matrix G and the parity-check matrix H. (6%)
- (c) Determine the error-detecting capability and the error-correcting capability of this code. (4%)
- (d) If the received vector $\mathbf{r} = (0\ 1\ 1\ 0\ 0\ 1)$, what is the decoded message? (3%)

22/54/