- 1 · The parameters for the circuit shown in Fig 1 are Ra = $100k\,\Omega$ · R_I = $500\,k\,\Omega$ · C_I = $0.1\,\mu$ F · Rb = $25k\,\Omega$ · R₂ = $100k\,\Omega$ · and C₂ = $1\,\mu$ F. The power supply voltage for each operational amplifier is $\pm 6V$ · The signal voltage(vg) for the cascaded integrating amplifiers jumps from 0 to $250\,mV$ at t = 0. No energy is stored in the feedback capacitors at the instant the signal is applied.
 - (a) Find the numerical expression of the differential equation for V_0 (5%)
 - (b) Find $V_0(t)$ for $t \ge 0$ (4%)
 - (c) Find the numerical expression of the differential equation for V_{01} (4%)
 - (d) Find $V_{01}(t)$ for $t \ge 0$ (4%)

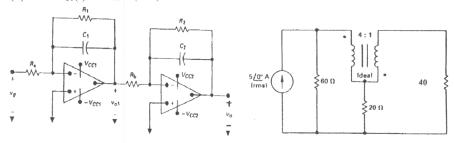


Fig. 1 Cascaded integrating amplifiers with feedback resistors.

Fig.2

- **2** A balanced three-phase load requires 480kW at a lagging power factor of 0.8 .The load is fed from a line having an impedance of 0.005 + j 0.025 Ω/ψ . The line voltage at the terminals of the load is 600V.
 - (a) Construct a single-phase equivalent circuit of the system (5%)
 - (b) Calculate the magnitude of the line current (4%)
 - (c) Calculate the magnitude of the line voltage at the sending end of the line (4%)
 - (d) Calculate the power factor at the sending end of the line (3%)
- 3 · (a) Find the average power delivered by the sinusoidal current source in the circuit shown in Fig.2 (5%)
 - (b) Find the average power delivered to the 20Ω resistor (3%)
- 4 The voltage source Vg drives the circuit shown in Fig.3. The response signal is the voltage across the capacitor, V_0 .
 - (a) Calculate the numerical expression for the transfer function (5%)
 - (b) Calculate the numerical values for the poles and zeros of the transfer function (4%)

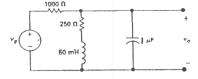


Fig. 3

(91) 學年度 國立成功大學 碩士班招生考試

系 电路学 試題 共之頁 所 第 2 頁

5. With the combination of two circuits shown in Fig. 4(a) and Fig. 4(b), where A is connected with E, and B is connected with F, please find the current exchanged by these two circuits. (15%)

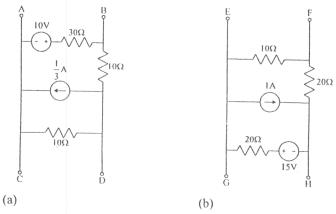
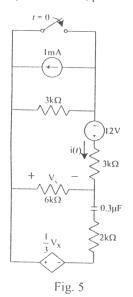



Fig. 4

6. The circuit of Fig. 5 is assumed in steady state at $t=0^{-}$, please find i(t) for $t\ge 0$. (15%)

- 7. In Fig. 6, with the employment of a voltmeter to measure the voltage V_1 , it reads 5.5V.
- (a) Please calculate the resistance of this voltmeter. (10%)
- (b) What is the percentage of error in the voltage measurement? (10%)

$$1.2k\Omega$$
 $1.2V$
 $1.3k\Omega$
 $1.3k\Omega$
 $1.3k\Omega$
 $1.3k\Omega$
 $1.3k\Omega$
 $1.3k\Omega$
 $1.3k\Omega$
 $1.3k\Omega$