- 1. (10%) Explain the terminologies: accuracy, precision, resolution, reliability and repeatability.
- 2. (20%) A cable is about 10 Km in length, and there is a ground fault shown in Figure A. The cable resistance is 10Ω per 1 Km. The data measured by Varley loop are: $P = 4 k\Omega$, $Q = 2 k\Omega$, $S = 200\Omega$ when switch at point a; $S = 180\Omega$ when switch at point b. Find the location of ground fault.
- 3. (20%) The parameters in a Wheatstone bridge are: $P=2 k\Omega$, $Q=1 k\Omega$, $S=4 k\Omega$, E=12V, minimum adjustable $\angle S=\pm 0.1\Omega$, $R_m=1 k\Omega$, and $I_G(min)=0.1 \mu$ A. Find the value of R and the sensitivity or resolution of the Wheatstone bridge in Figure B.

- 4. (20%) (a) Define the Q factor for an inductor. Write the equations for inductor Q factor with RL series and parallel equivalent circuits. (b) Define the D factor for a capacitor. Write the equations for capacitor D factor with RC series and parallel equivalent circuits. (c) Explain the physical meaning of Q and D factors.
- 5. (15%) Sketch a typical ohmmeter (Figure C) scale, explain why the scale is <u>nonlinear</u>, and explain which part of the scale gives the most accurate resistance measurement. (Hint: Assume that the PMMC meter has a 1% accuracy, $I_{FSD} = 100 \, \mu A$, and $E_b = 1.5 \, V$, find the accuracy when the pointer is at 0.2FSD, 0.5FSD, and 0.8FSD. Assuming that ohmmeter uses precision internal resistors)

Figure D. A basic Q meter circuit.

6. (15%) With the signal generator frequency of a Q meter (Figure D) set to 1.25 MHz, the Q of a coil is measured as 98 when $C = 147 \, pF$. Determine the coil inductance (L) and resistance (R).