- 1) Find the Thevenin and Norton equivalents of the network of Fig.1. (15%)
- 2) For the balanced 2400V three-phase system shown in Fig. 2, let V_{ab} be the reference; that is, let $V_{ab} = 2400 \angle 0$ V. Assume a positive (abc) phase sequence.
 - (a) Calculate currents I_{AA1} . I_{AA2} , I_{A2B2} , and I_{aA} . (10%)
 - (b) Determine the complex power absorbed by each load and the combined load. (10%)
- 3) Two sinusoidal sources that have different frequencies have been driving the RL network of Fig.3 for a long time (that is, since $t = -\infty$). Determine v(t). (15%)

Figure 1

Figure 2

Figure 3

(背面仍有題目,請繼續作答)

4. With the adjustment of the resistor R_L in the circuit of Fig. 4, the maximum power delivered to R_L can be achieved. Please calculate the maximum power transferred to R_L ? (20 %)

Fig. 4

5. In Fig. 5, the circuit is assumed in steady state at $t=0^-$. Find v(t), for $t\ge 0$. (15 %)

Fig. 5

6. Find the current i_1 flowing through the 18 Ω resistor. (15 %)

