
- 1. (a) A CMOS inverter pair is shown in Fig. 1(a). Let $V_{TN}=0.8V$, $V_{TP}=-0.8V$, and $K_{TP}=-0.8V$.
 - (i) If $v_{01}=0.6$ V, determine v_1 and v_{02} . (ii) Determine the range of v_{02} for which both N_2 and P_2 are biased in the saturation region. (20%)
 - What is the function realized at Y in the CMOS circuit shown in Fig. 1(b)? (5%)

- 2. Your answers must be as brief as possible for the following questions
 - (a) List the parameters used to specify the transmission characteristics of a low-pass filter. (5%)
 - (b) A filter transfer function is written as the ratio of two polynomials. The degree of its denominator is P and the degree of its numerator is R. What's the order of the filter? (5%)
 - (b) For the filter in (b) to be stable, what is the relation between P and Q. (5%)
 - (c) For the amplifier in Fig. 2, what's the class of its output stage? (Hint: Maybe one of class AB, A, B, C, D, E, ..., etc.) (5%)
 - (d) What is the function of the R and Cc in Fig. 2? (5%)
- 3. A multiple amplifier having a first pole at 1MHz and an open-loop gain of 100dB is to be compensated for closed-loop gains as low as 20 dB by introduction of a new dominant pole. At what frequency must the new pole be placed?(3%)
- 4. Consider the complementary BJT class B output stage and neglect the effects of V_{BE} and V_{CEsat} . For $\pm 10V$ power supplies and a $100-\Omega$ load resistance, what is the

maximum sine-wave output power available? What supply power corresponds? What is the power-conversion efficiency? For output signals of half this amplitude, find the power-conversion efficiency.(10%)

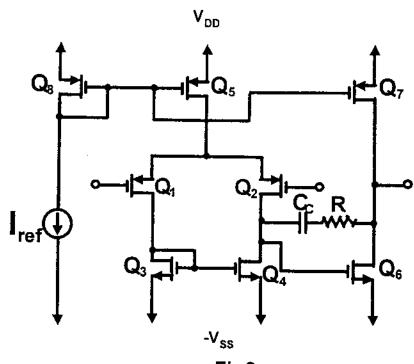
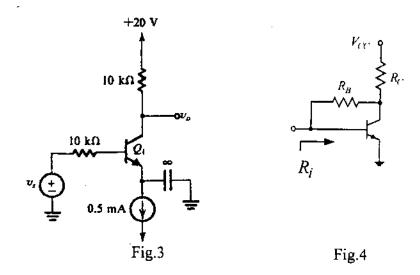



Fig2

- 5. As the circuit shown in Fig.3, let β =100, C_{μ} =2pF and f_{τ} =400MHz. Calculate the midband gain and the upper 3-dB frequency. (12%)
- 6. Draw and explain briefly the possible load line of an enhancement-mode n-MOSFET using (a) a forward-biased diode, or (b) a reverse-biased diode, or (c) a depletion-mode n-MOSFET with $V_{GS}=0\ V$ as the load device. (15%)
- 7. Calculate the small-signal input resistance R_i as shown in Fig. 4. Assume $R_B = R_C = 2 \ k\Omega$, $g_m = 25 \ mS$, $\beta = 100$, and $r_o = \infty$ (10%)

